| w.Maths<br><u>AL/2019/10</u> | sApi.com<br>/E-I(NEW)                                                                                                                          |                                                                                                                                                                |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>ticzą 0 155</i> 26        | ම ඇපිටිනි ( ගුඟුරා යනු                                                                                                                         | Singfionoujan_เมสูง IA                                                                                                                                         | ll Rights Re                                                    | served]                                                       | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 100 - 10 - <u>100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100</u>                          | (නව නිඊදේශය/(                                                                                                                                                  | புதிய பாட                                                       | த்திட்டம்/Ne                                                  | w Syllabi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | கைக்கைத்தை இடைக்களம்<br>கேருந்து இட்டு<br>குறைத்து இட்டு<br>குறைக்களம்<br>கேருந்து<br>கைக்கிப்<br>கேர்விப்<br>கெர்விப்<br>கெர்விப்<br>கெர்விப் | ் கலை கேற்றுக்கு<br>இலங்கைப் பிருந்து<br>நலங்கைப் பிருந்து<br>இலங்கைப் பிருந்து<br>குலங்கைப் பிருந்து<br>கேற்கு கலைவின்<br>பாதுத் தராதரப்<br>ertificate of Edu | <b>ல் சீரை (</b><br>பெருர் இவ<br>பைதர்<br>பத்திர<br>(cation (Ad | economicano<br>martine<br>dece) D<br>put stju<br>v. Level) Br | HERE<br>MANUALS, Sri<br>MERES, SRI<br>MERE | லால் கால்கு குடியில் குண்ணு குறைக்கு குடைக்கு குடைக்கு குடியில் குடைக்கு குடியில் குடியில் குடியில் குடியில் குடியில் குடைக்கு குண்ணுக்கு குடியில் குடைக்கு குண்ணுக்கு குடியில் கை |
| සංයුක්ත<br>இணைந்த<br>Combin  | ගණිතය<br>5 සණ්ඩනුග්<br>ed Mathemat                                                                                                             | I<br>I<br>ics I                                                                                                                                                | 10 E                                                            |                                                               | 05.08.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2019 / 0830-1140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ஜன ஜச<br>மூன்று<br>Three h   | ைசீ<br>மணித்தியாலம்<br>ours                                                                                                                    |                                                                                                                                                                |                                                                 | අමත<br>மேல<br>Add                                             | ර කියවීම<br>නිස බැජ<br>itional Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) කාලය - මිනිත්තු 10 3<br>சிப்பு நேரம் - 10 நிமிடங்கள்<br>eading Time - 10 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Use addit<br>that you g      | ional reading tin                                                                                                                              | ne to go through t<br>wering.                                                                                                                                  | he question                                                     | paper, select i                                               | the questic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ons and decide on the questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | ~                                                                                                                                              |                                                                                                                                                                |                                                                 | ·····                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instance                     |                                                                                                                                                | Index Number                                                                                                                                                   |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instruction                  | THE ST                                                                                                                                         | •                                                                                                                                                              |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                            | This question p                                                                                                                                | paper consists of                                                                                                                                              | two parts;<br>Part B (C                                         | mestione 11                                                   | 17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| *                            | Part A:                                                                                                                                        |                                                                                                                                                                |                                                                 | Teronono II .                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | Answer all que                                                                                                                                 | stions. Write you                                                                                                                                              | ir answers                                                      | to each ques                                                  | tion in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ne space provided. You may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              | use additional                                                                                                                                 | sheets if more sp                                                                                                                                              | pace is nee                                                     | ded.                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                            | Part B:                                                                                                                                        |                                                                                                                                                                | •                                                               | 2.                                                            | <b>T</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -7-                          | Answer five qu                                                                                                                                 | estions only. Wri                                                                                                                                              | te your ans                                                     | wers on the                                                   | sheets pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ovided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 茶                            | At the end of                                                                                                                                  | the time allotted                                                                                                                                              | i, the the c                                                    | inswer script:                                                | s of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | two parts together so that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40                           | Furt A is on i                                                                                                                                 | op of <b>Part B</b> an                                                                                                                                         | id hand the                                                     | m over to th                                                  | ie supervi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | 104 are permit                                                                                                                                 | ee to remove on                                                                                                                                                | y ran b                                                         | of the questi                                                 | m paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | jrom the Examination Hall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (4.0)                        | /                                                                                                                                              | For                                                                                                                                                            | Examine                                                         | rs' Use only                                                  | <b>7</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (10)<br>Dave                 | Combined Math                                                                                                                                  | ematics I                                                                                                                                                      |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I ALL                        | <u>Question No.</u>                                                                                                                            | IVERIAS                                                                                                                                                        |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 2                                                                                                                                              |                                                                                                                                                                |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 3                                                                                                                                              |                                                                                                                                                                |                                                                 | (                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | 4                                                                                                                                              |                                                                                                                                                                |                                                                 | In Numbers                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A                            | 5.0                                                                                                                                            |                                                                                                                                                                |                                                                 | In Words                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | 6                                                                                                                                              |                                                                                                                                                                |                                                                 | · · · · · · · · · · · · · · · · · · ·                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 7                                                                                                                                              |                                                                                                                                                                |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Code Numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | 8                                                                                                                                              |                                                                                                                                                                |                                                                 | Marking Ex                                                    | aminer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 9                                                                                                                                              | []                                                                                                                                                             |                                                                 | Cheaterith                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 10                                                                                                                                             |                                                                                                                                                                |                                                                 | Checked by:                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 11                                                                                                                                             | <u> </u>                                                                                                                                                       |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | 12                                                                                                                                             | <u> </u>                                                                                                                                                       |                                                                 | [Supervised ]                                                 | o <b>y</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| n –                          | 13                                                                                                                                             | <u> </u>                                                                                                                                                       |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R                            | 14                                                                                                                                             |                                                                                                                                                                |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 15                                                                                                                                             | · · · · · ·                                                                                                                                                    |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 16                                                                                                                                             |                                                                                                                                                                |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 17                                                                                                                                             |                                                                                                                                                                |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | Tatal                                                                                                                                          |                                                                                                                                                                |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 10134                                                                                                                                          |                                                                                                                                                                |                                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Sri Lan ations nin **Department of Exar** 

[see page two

| www.MathsApi.com    |  |
|---------------------|--|
| AL/2019/10/E-I(NEW) |  |

| - | 2 | - |
|---|---|---|
|---|---|---|

|            | Part A                                                                                                                                                          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.         | Using the Principle of Mathematical Induction, prove that $\sum_{r=1}^{n} (2r-1) = n^2$ for all $n \in \mathbb{Z}^+$ .                                          |
|            |                                                                                                                                                                 |
| <br>:      |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
| : -<br>: . |                                                                                                                                                                 |
| •          | ·····                                                                                                                                                           |
| : •        |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
| 4.         | Sketch the graphs of $y= 4x-3 $ and $y=3-2 x $ in the same diagram.<br>Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$ . |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
| :          |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |
|            |                                                                                                                                                                 |

| AL        | VIATNSAPI.com<br>/2019/10/E-I(NEW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                                            | -3-                       | Index Nu                            | mber                                               |                                 |                         |                |                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------|-------------------------------------|----------------------------------------------------|---------------------------------|-------------------------|----------------|---------------------------------------------------------------------------------|
| 3.        | Sketch, in an Argand diagra<br>Arg $(z - 2 - 2i) = -\frac{3\pi}{4}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | am, the locus                                 | of the po                 | oints that r                        | epresent o                                         | complex                         | numbe                   | rs <i>z</i> si | atisfying                                                                       |
| J         | Hence or otherwise, find t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | he minimum                                    | value of                  | $ i\overline{z}+1 $ s               | uch that                                           | Arg( <i>z</i> -                 | - 2 – 2i)               | == - =         | $\frac{3\pi}{4}$ .                                                              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • • • • • • • • • • • • • • • • • • •       | • • • • • • • • • • •     |                                     |                                                    |                                 | • • • • • • • • • • •   |                |                                                                                 |
| •         | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               | **********                |                                     | • • • • • • • • • • • • • • • • • • • •            |                                 | • • • • • • • • • • •   |                |                                                                                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••••••••••                                   |                           |                                     |                                                    |                                 | • • • • • • • • • • • • |                |                                                                                 |
| -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                           |                                     |                                                    | • • • • • • • • • • •           |                         |                |                                                                                 |
| •         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | •••••                     |                                     |                                                    |                                 |                         |                |                                                                                 |
|           | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                           |                                     |                                                    |                                 |                         |                |                                                                                 |
|           | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                           | • • • • • • • • • • • • • • • • • • |                                                    | • • • • • • • • • • • •         |                         |                |                                                                                 |
| •         | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | ••••••••••                |                                     |                                                    |                                 |                         |                |                                                                                 |
| •         | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |                           |                                     |                                                    |                                 |                         | •••••          |                                                                                 |
|           | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | • • • • • • • • • • • • • |                                     |                                                    |                                 |                         | •••••          |                                                                                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                           |                                     |                                                    | •••••                           |                         | *******        |                                                                                 |
| -         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                           |                                     |                                                    |                                 |                         | *****          | •••••                                                                           |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                           |                                     |                                                    |                                 |                         |                | •••••                                                                           |
| 4. 5      | Show that the coefficient of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $x^6$ in the bind                             | omial exp                 | ansion of                           | $\left(x^3 + \frac{1}{x^2}\right)$                 | <sup>7</sup> is 35.             |                         | •••••          | • • • • • • • • • •                                                             |
| 4. S<br>S | Show that the coefficient of<br>Show also that there does no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $x^6$ in the bind of exist a term             | omial exp<br>indepen      | ansion of dent of $x$ i             | $\left(x^3 + \frac{1}{x^2}\right)$<br>in the abo   | 7<br>is 35.<br>ove bino         | mial ex                 | pansic         | ) <b>n.</b>                                                                     |
| 4. S<br>S | Show that the coefficient of<br>Show also that there does n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x^6$ in the bind<br>ot exist a term          | omial exp<br>1 indepen    | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$<br>in the above | <sup>7</sup> is 35.<br>ove bino | mial ex                 | pansic         | )n.                                                                             |
| 4. S<br>S | Show that the coefficient of<br>Show also that there does n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x^6$ in the bind<br>ot exist a term          | omial exp<br>1 indepen    | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$<br>in the above | <sup>7</sup> is 35.<br>ove bino | mial ex                 | pansic         | ) <b>n.</b>                                                                     |
| 4. S<br>S | Show that the coefficient of<br>Show also that there does n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x^6$ in the bind<br>of exist a term          | omial exp                 | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$<br>in the above | <sup>7</sup> is 35.<br>ove bino | mial ex                 | pansic         | ) <b>R.</b>                                                                     |
| 4. S<br>S | Show that the coefficient of<br>Show also that there <b>does</b> n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x^6$ in the bind<br>of exist a term          | omial exp                 | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$<br>in the above | <sup>7</sup> is 35.<br>ove bino | mial ex                 | pansic         | ) <b>n</b> .                                                                    |
| 4. S<br>S | Show that the coefficient of<br>Show also that there <b>does</b> n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x^6$ in the bind<br>of exist a term          | omial exp                 | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$<br>in the above | <sup>7</sup> is 35.<br>ove bino | mial ex                 | pansic         | D <b>D</b> .                                                                    |
| 4. S<br>S | Show that the coefficient of<br>Show also that there <b>does</b> n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x^6$ in the bind<br>of exist a term          | omial exp                 | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$ in the above    | <sup>7</sup> is 35.<br>ove bino | mial ex                 | pansic         | ••••••••••••••••••••••••••••••••••••••                                          |
| 4. S<br>S | Show that the coefficient of<br>Show also that there does n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x^6$ in the bind<br>of exist a term          | mial exp                  | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$ in the above    | <sup>7</sup> is 35.<br>we bino  | mial ex                 | pansic         | ••••••••••••••••••••••••••••••••••••••                                          |
| 4. S<br>S | Show that the coefficient of<br>Show also that there does n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x^6$ in the bind<br>of exist a term          | mial exp                  | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$ in the above    | <sup>7</sup> is 35.<br>we bino  | mial ex                 | pansic         | · · · · · · · · · · · · · · · · · · ·                                           |
| 4. S      | Show that the coefficient of<br>Show also that there does not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x <sup>6</sup> in the bind<br>of exist a term | mial exp                  | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$ in the above    | <sup>7</sup> is 35.<br>we bino  | mial ex                 | pansic         | э <b>л.</b>                                                                     |
| 4. S<br>S | Show that the coefficient of<br>Show also that there does not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x <sup>6</sup> in the bind<br>of exist a term | mial exp                  | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$ in the above    | <sup>7</sup> is 35.<br>we bino  | mial ex                 | pansic         | 5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5 |
| 4. 5      | Show that the coefficient of<br>Show also that there does not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x <sup>6</sup> in the bind<br>of exist a term | omial exp                 | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$ in the above    | <sup>7</sup> is 35.<br>ove bino | mial ex                 | pansic         | · · · · · · · · · · · · · · · · · · ·                                           |
| 4. 5<br>5 | Show that the coefficient of<br>Show also that there does not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x <sup>6</sup> in the bind<br>of exist a term | omial exp                 | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$ in the above    | <sup>7</sup> is 35.<br>we bino  | mial ex                 | pansic         | · · · · · · · · · · · · · · · · · · ·                                           |
| 4. S<br>S | Show that the coefficient of<br>Show also that there does not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x <sup>6</sup> in the bind<br>of exist a term | omial exp                 | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$ in the above    | <sup>7</sup> is 35.<br>ove bino | mial ex                 | pansic         | · · · · · · · · · · · · · · · · · · ·                                           |
| 4. 5      | Show that the coefficient of Show also that there does not set the set of the | x <sup>6</sup> in the bind<br>of exist a term | omial exp                 | ansion of<br>dent of x i            | $\left(x^3 + \frac{1}{x^2}\right)$ in the above    | <sup>7</sup> is 35.<br>ove bino | mial ex                 | pansic         | · · · · · · · · · · · · · · · · · · ·                                           |

| 5. | Show that $\lim_{x \to 2} \frac{\sqrt{x-2}-1}{\sqrt{x-2}} = \frac{1}{2\pi}$ .                                     |
|----|-------------------------------------------------------------------------------------------------------------------|
|    | $x \rightarrow 3 \sin(\pi(x-3)) = 2\pi$                                                                           |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    | Ś                                                                                                                 |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
| 6. | The region enclosed by the curves $y = \sqrt{\frac{x+1}{x^2+1}}$ , $x=0$ , $x=1$ and $y=0$ is rotated about the   |
|    | x-axis through $2\pi$ radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(\pi + \ln 4)$ . |
|    |                                                                                                                   |
| ł  |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |
|    |                                                                                                                   |

# www.MathsApi.com <u>AL/2019/10/E-I(NEW)</u>

| /. | Let C be the parabola parametrically given by $x = at^2$ and $y = 2at$ for $t \in \mathbb{R}$ , where $a \neq 0$<br>Show that the equation of the normal line to the parabola C at the point $(at^2, 2at)$ is given by $y+tx=2at+at^3$ .                                                        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | The normal line at the point $P \equiv (4a, 4a)$ on the parabola C meets this parabola again at a point $Q \equiv (aT^2, 2aT)$ . Show that $T = -3$ .                                                                                                                                           |
|    |                                                                                                                                                                                                                                                                                                 |
|    | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                         |
|    |                                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                 |
|    | <u> </u>                                                                                                                                                                                                                                                                                        |
|    | ······                                                                                                                                                                                                                                                                                          |
|    |                                                                                                                                                                                                                                                                                                 |
|    | <u> </u>                                                                                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                 |
| 8, | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct points P and Q are on the line $l_1$ such that the perpendicular distance from each of these points                                                                              |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct points P and Q are on the line $l_1$ such that the perpendicular distance from each of these points to the line $l_2$ is 1 unit. Find the coordinates of P and Q.                |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct points P and Q are on the line $l_1$ such that the perpendicular distance from each of these points to the line $l_2$ is 1 unit. Find the coordinates of P and Q.                |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct points $P$ and $Q$ are on the line $l_1$ such that the perpendicular distance from each of these points to the line $l_2$ is 1 unit. Find the coordinates of $P$ and $Q$ .       |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct points $P$ and $Q$ are on the line $l_1$ such that the perpendicular distance from each of these points to the line $l_2$ is 1 unit. Find the coordinates of $P$ and $Q$ .       |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct<br>points P and Q are on the line $l_1$ such that the perpendicular distance from each of these points<br>to the line $l_2$ is 1 unit. Find the coordinates of P and Q.          |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct points P and Q are on the line $l_1$ such that the perpendicular distance from each of these points to the line $l_2$ is 1 unit. Find the coordinates of P and Q.                |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct<br>points P and Q are on the line $l_1$ such that the perpendicular distance from each of these points<br>to the line $l_2$ is 1 unit. Find the coordinates of P and Q.          |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct<br>points P and Q are on the line $l_1$ such that the perpendicular distance from each of these points<br>to the line $l_2$ is 1 unit. Find the coordinates of P and Q.          |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct<br>points P and Q are on the line $l_1$ such that the perpendicular distance from each of these points<br>to the line $l_2$ is 1 unit. Find the coordinates of P and Q.          |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct<br>points $P$ and $Q$ are on the line $l_1$ such that the perpendicular distance from each of these points<br>to the line $l_2$ is 1 unit. Find the coordinates of $P$ and $Q$ . |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct<br>points P and Q are on the line $l_1$ such that the perpendicular distance from each of these points<br>to the line $l_2$ is 1 unit. Find the coordinates of P and Q.          |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct<br>points $P$ and $Q$ are on the line $l_1$ such that the perpendicular distance from each of these points<br>to the line $l_2$ is 1 unit. Find the coordinates of $P$ and $Q$ . |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct<br>points $P$ and $Q$ are on the line $l_1$ such that the perpendicular distance from each of these points<br>to the line $l_2$ is 1 unit. Find the coordinates of $P$ and $Q$ . |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct<br>points P and Q are on the line $l_1$ such that the perpendicular distance from each of these points<br>to the line $l_2$ is 1 unit. Find the coordinates of P and Q.          |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct<br>points P and Q are on the line $l_1$ such that the perpendicular distance from each of these points<br>to the line $l_2$ is 1 unit. Find the coordinates of P and Q.          |
| 8. | Let $l_1$ and $l_2$ be the straight lines given by $x + y = 4$ and $4x + 3y = 10$ , respectively. Two distinct<br>points $P$ and $Q$ are on the line $l_1$ such that the perpendicular distance from each of these points<br>to the line $l_2$ is 1 unit. Find the coordinates of $P$ and $Q$ . |

- 5 -

| ΑĽ  | /2019/10/E-I(NEW) <u>- 6 -</u>                                                                           |
|-----|----------------------------------------------------------------------------------------------------------|
| 9.  | Show that the point $A \equiv (-7, 9)$ lies outside the circle $S \equiv x^2 + y^2 - 4x + 6y - 12 = 0$ . |
|     | Find the coordinates of the point on the circle $S=0$ nearest to the point A.                            |
| ÷ - |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     | Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$ .                                                       |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     | *****                                                                                                    |
|     |                                                                                                          |
|     |                                                                                                          |
|     | ***************************************                                                                  |
|     | *****                                                                                                    |
|     |                                                                                                          |
|     | •••••••••••••••••••••••••••••••••••••••                                                                  |



AL/2019/10/E-I(NEW)  $\mathbf{A} = \begin{pmatrix} a & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -a & 4 \end{pmatrix} \text{ and } \mathbf{C} = \begin{pmatrix} b & -2 \\ -1 & b + 1 \end{pmatrix} \text{ be matrices such that}$ 13. (a) Let  $AB^{T} = C$ , where  $a, b \in \mathbb{R}$ . Show that a = 2 and b = 1. Show also that,  $C^{-1}$  does not exist. Let  $\mathbf{P} = \frac{1}{2}(\mathbf{C} - 2\mathbf{I})$ . Write down  $\mathbf{P}^{-1}$  and find the matrix Q such that  $2\mathbf{P}(\mathbf{Q} + 3\mathbf{I}) = \mathbf{P} - \mathbf{I}$ , where I is the identity matrix of order 2. (b) Let  $z, z_1, z_2 \in \mathbb{C}$ . Show that (i)  $\operatorname{Re} z \leq |z|$ , and (ii)  $\left|\frac{z_1}{z_2}\right| = \left|\frac{z_1}{z_2}\right|$  for  $z_2 \neq 0$ . **Deduce** that  $\operatorname{Re}\left(\frac{z_1}{z_1 + z_2}\right) \le \frac{|z_1|}{|z_1 + z_2|}$  for  $z_1 + z_2 \ne 0$ . Verify that  $\operatorname{Re}\left(\frac{z_1}{z_1+z_2}\right) + \operatorname{Re}\left(\frac{z_2}{z_1+z_2}\right) = 1$  for  $z_1 + z_2 \neq 0$ , and show that  $|z_1 + z_2| \le |z_1| + |z_2|$  for  $z_1, z_2 \in \mathbb{C}$ (c) Let  $\omega = \frac{1}{2} (1 - \sqrt{3}i)$ . Express  $1+\omega$  in the form  $r(\cos\theta+i\sin\theta)$ ; where r(>0) and  $\theta\left(-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$  are constants to be determined. Using De Moivre's theorem, show that  $(1+\omega)^{10} + (1+\overline{\omega})^{10} = 243$ . 14.(a) Let  $f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^3}$  for  $x \neq 3$ . Show that f'(x), the derivative of f(x), is given by  $f'(x) = -\frac{9(x+3)(x-5)}{(x-3)^4}$  for  $x \neq 3$ . Sketch the graph of y=f(x) indicating the asymptotes, y-intercept and the turning points. It is given that  $f''(x) = \frac{18(x^2 - 33)}{(x - 3)^5}$  for  $x \neq 3$ . Find the x-coordinates of the points of inflection of the graph of y=f(x). (b) The adjoining figure shows a basin in the form of a 2*r* cm frustum of a right circular cone with a bottom. The slant length of the basin is 30 cm and the radius of the upper circular edge is twice the radius of the bottom. 30 cm Let the radius of the bottom be  $r \, \mathrm{cm}$ . Show that the volume  $V \text{ cm}^3$  of the basin is given by  $V = \frac{7}{3}\pi r^2 \sqrt{900 - r^2} \text{ for } 0 < r < 30.$ Find the value of r such that volume of the basin is maximum. [see page nine

### AL/2019/10/E-I(NEW)

Find the value of  $\lambda$  such that the circle given by S=0 is orthogonal to the circle given by  $S+\lambda U=0$ .

[see page ten

#### AL/2019/10/E-I(NEW)

17. (a) Write down sin(A+B) in terms of sin A, cos A, sin B and cos B, and obtain a similar expression for  $\sin(A-B)$ . Deduce that  $2\sin A \cos B = \sin (A+B) + \sin (A-B)$  and  $2\cos A \sin B = \sin (A+B) - \sin (A-B).$ Hence, solve  $2\sin 3\theta \cos 2\theta = \sin 7\theta$  for  $0 < \theta < \frac{\pi}{2}$ . (b) In a triangle ABC, the point D lies on AC such that BD = DC and AD = BC. Let  $B\hat{A}C = \alpha$ and  $A\hat{C}B = \beta$ . Using the Sine Rule for suitable triangles, show that  $2\sin\alpha\cos\beta = \sin(\alpha + 2\beta)$ . If  $\alpha : \beta = 3 : 2$ , using the last result in (a) above, show that  $\alpha = \frac{\pi}{6}$ . (c) Solve  $2\tan^{-1}x + \tan^{-1}(x+1) = \frac{\pi}{2}$ . Hence, show that  $\cos\left(\frac{\pi}{4} - \frac{1}{2}\tan^{-1}\left(\frac{4}{3}\right)\right) = \frac{3}{\sqrt{10}}$ . \* \* \* entotexan

| v .1v       | 141151                                         | <b>I</b> pi.com                                                                                        |                                                           | 2900                                                                                                                                                                                                                                            |
|-------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AI<br>( Car | L/2019/10/<br>g & S&at                         | E-11(NEW)<br>ஸ்லீலி /முழுப் பதிப்பரிமை                                                                 | jon_ugj/All Rights Ri                                     | eserved]                                                                                                                                                                                                                                        |
|             |                                                | ( තව                                                                                                   | ട്രാപ്പേട്ടിഡ വന                                          | டத்திட்டம்/New Syllabus)                                                                                                                                                                                                                        |
| 6           | <u></u>                                        | කාර්තාමන්තුව ලී ලංකා විනාග දෙ                                                                          | ncocsatilesServendian                                     | දෙපාර්තුවකින්නැති හියුදෙකා වනාග දෙපාර්තමේන්තුව ඒ ලංකා වනාග දෙපාර්තමේන්                                                                                                                                                                          |
|             | NEŊ                                            | தினைக்களம் இலங்கை<br>Providential Separtment<br>சேச்சும் இரு இரு இல்லை குர<br>கிரை தினைக்களம் இலங்கைப் |                                                           | இந்நிறைப் பிடல்த் தினைக்களம் இலங்கைப் பிடனத் தினைக்க<br>இது பாதிலைக்குக்குக்கு Sri Lanka Department of Examinations, Sri Lan<br>மாதி நாதிகால குஷா திரை மூற்றைக்குற்கு குறை கேல ரோற்றைக்க<br>இந்நிறைப் பிடனத் தினைக்களம் இலங்கைப் பிடனத் தினைக்க |
|             |                                                | අධාසයන පොදු<br>සබාඛා් බොලාස්<br>General Certificate                                                    | லை கிகையை பிரைக்கு<br>திராதரப் பத்திர<br>of Education (Ac | ல் சைகு) திலைக், 2019 மூல்லீன்<br>(உயர் தர)ப் பரீட்சை, 2019 ஒகஸ்ந்<br>iv. Level) Examination, August 2019                                                                                                                                       |
|             | <sub>ථංයුක්ත</sub><br>ඉഞාഞාந்த<br>Combine      | හණිකය II<br>සංකෝළාර II<br>d Mathematics II                                                             | ) <b>10</b> E                                             | 07.08.2019 / 0830 - 1140                                                                                                                                                                                                                        |
|             | ஜ <i>ය                                    </i> | சீ<br>ஹித்தியாலம்<br>purs                                                                              |                                                           | අමතර කියවීම කාලය - මිනි <mark>ත්තු 10</mark> යි<br>மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள்<br>Additional Reading Time - 10 minutes                                                                                                                |
|             | Jse addition<br>hat you give                   | onal reading time to go<br>ve priority in answering.                                                   | through the question                                      | n paper, select the questions and decide on the question                                                                                                                                                                                        |
|             |                                                | (F                                                                                                     |                                                           |                                                                                                                                                                                                                                                 |
| J           | Instructi                                      | ons:                                                                                                   | <u>x</u>                                                  |                                                                                                                                                                                                                                                 |
|             |                                                | * This question pap                                                                                    | er consists of two                                        | parts;                                                                                                                                                                                                                                          |
|             |                                                | Part A (Question                                                                                       | s $i-10$ ) and Part                                       | <b>B</b> (Questions $11-17$ )                                                                                                                                                                                                                   |
|             |                                                | * Part A:<br>Answer all questi                                                                         | one Write your one                                        | were to each question in the space provided you mu                                                                                                                                                                                              |
| . •         | Ś                                              | use additional sh                                                                                      | eets if more space                                        | is needed.                                                                                                                                                                                                                                      |
|             |                                                | * Part B:                                                                                              | - * -                                                     |                                                                                                                                                                                                                                                 |
|             |                                                | Answer five ques                                                                                       | ions only. Write yo                                       | ur answers on the sheets provided.                                                                                                                                                                                                              |
|             |                                                | * At the end of the                                                                                    | time allotted, tie                                        | the answer scripts of the two parts together so the                                                                                                                                                                                             |
|             | :                                              | • Fall A is on top                                                                                     | to remove only Do                                         | ind them over to the supervisor.<br><b>It B</b> of the question paper from the Examination $Ha$                                                                                                                                                 |
|             |                                                | * Iou are permanea                                                                                     | to remove only Ta                                         |                                                                                                                                                                                                                                                 |
|             |                                                | * In this question p                                                                                   | aper, g denotes the                                       | e acceleration due to gravity.                                                                                                                                                                                                                  |
|             |                                                | 6                                                                                                      | For Examine                                               | rrs' Use only                                                                                                                                                                                                                                   |
| Г           | (10)                                           | Construct Mathematic                                                                                   |                                                           |                                                                                                                                                                                                                                                 |
|             | (10)<br>Part                                   | Ouestion No.                                                                                           | ll<br>arks                                                |                                                                                                                                                                                                                                                 |
| ŀ           | ····                                           | 1                                                                                                      |                                                           |                                                                                                                                                                                                                                                 |
|             |                                                | 2                                                                                                      |                                                           | /P- 6 3                                                                                                                                                                                                                                         |
|             |                                                | 3                                                                                                      |                                                           | In Numbers                                                                                                                                                                                                                                      |
|             |                                                | 4                                                                                                      |                                                           |                                                                                                                                                                                                                                                 |
|             | A                                              | 5                                                                                                      |                                                           | In words                                                                                                                                                                                                                                        |
|             | 2                                              | 6                                                                                                      |                                                           | Codo Numbors                                                                                                                                                                                                                                    |
|             | 0                                              |                                                                                                        |                                                           | Marking Evaminer                                                                                                                                                                                                                                |
|             | 3                                              | 8                                                                                                      |                                                           | Marnig L'Adulici                                                                                                                                                                                                                                |
|             |                                                | <u>y</u>                                                                                               |                                                           | Checked by: 1                                                                                                                                                                                                                                   |
|             | · · · ·                                        | 10                                                                                                     |                                                           | 2                                                                                                                                                                                                                                               |
|             |                                                |                                                                                                        |                                                           | Supervised by:                                                                                                                                                                                                                                  |
|             |                                                | 12                                                                                                     |                                                           | L                                                                                                                                                                                                                                               |
|             | В                                              | 14                                                                                                     |                                                           |                                                                                                                                                                                                                                                 |
|             |                                                | 15                                                                                                     |                                                           |                                                                                                                                                                                                                                                 |
|             |                                                | 16                                                                                                     |                                                           |                                                                                                                                                                                                                                                 |
|             |                                                | 17                                                                                                     |                                                           |                                                                                                                                                                                                                                                 |
|             |                                                |                                                                                                        |                                                           |                                                                                                                                                                                                                                                 |
|             |                                                | Total                                                                                                  |                                                           |                                                                                                                                                                                                                                                 |

### AL/2019/10/E-H(NEW)

| - 2  | - |
|------|---|
| Dart | A |

÷

| (        | Part A                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Three particles $A$ , $B$ and $C$ , each of mass $m$ , are placed in that order, in a straight line on a smooth horizontal table. The particle $A$ is given a velocity $u$ such that it collides directly with the particle $B$ . After colliding with the particle $A$ , the particle $B$ moves and collides directly with the particle $C$ . The coefficient of restitution between $A$ and $B$ is $e$ . Find the velocity of $B$ after the first collision. |
|          | The coefficient of restitution between $B$ and $C$ is also $e$ . Write down the velocity of $C$ after its collision with $B$ .                                                                                                                                                                                                                                                                                                                                 |
|          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.       | A particle is projected from a point $O$ on a horizontal floor with<br>a velocity whose horizontal and vertical components are $\sqrt{aa}$ and                                                                                                                                                                                                                                                                                                                 |
|          | $\sqrt{6ga}$ , respectively. The particle just clears two vertical walls                                                                                                                                                                                                                                                                                                                                                                                       |
|          | of heights $a$ and $b$ which are at a horizontal distance $a$ apart, $b$                                                                                                                                                                                                                                                                                                                                                                                       |
|          | as shown in the figure. Show that the vertical component of the $\frac{\sqrt{6ga}}{4}$                                                                                                                                                                                                                                                                                                                                                                         |
|          | velocity of the particle when it passes the wall of height a is $2\sqrt{ga}$ .                                                                                                                                                                                                                                                                                                                                                                                 |
|          | Show further that $b = \frac{5a}{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | J                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u> </u> | see page three                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| <i>.</i>   | L/2019/10/E-II(NEW) - 3 - [Index N                                                                                                                                                                                                                                                                                                                            | umber                                                          |                                                        |                                              |                                         |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|-----------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                               | 1.14                                                           |                                                        | М                                            |                                         |
| i.         | In the figure, A, B and C are particles of masses $m, m$ are connected by                                                                                                                                                                                                                                                                                     | and M,                                                         | <u> </u>                                               | <u></u>                                      |                                         |
|            | inextensible string The particle C, lying on a smooth ho                                                                                                                                                                                                                                                                                                      | rizontal                                                       |                                                        | C                                            |                                         |
|            | table, is connected to $B$ by another light inextensible string                                                                                                                                                                                                                                                                                               | passing                                                        |                                                        |                                              |                                         |
|            | over a smooth small pulley fixed at the edge of the tab                                                                                                                                                                                                                                                                                                       | le. The                                                        |                                                        |                                              | $m \diamondsuit B$                      |
|            | particles and the strings all lie in the same vertical plan                                                                                                                                                                                                                                                                                                   | ne. The                                                        |                                                        |                                              |                                         |
|            | system is released from rest with the strings taut. Write                                                                                                                                                                                                                                                                                                     | e down                                                         |                                                        |                                              |                                         |
|            | equations sufficient to determine the tension of the string $A$ and $B$ .                                                                                                                                                                                                                                                                                     | joining                                                        |                                                        |                                              | mĠA                                     |
|            |                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                        |                                              | 12                                      |
|            | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                       | •••••                                                          | • • • • • • • • • • • • • • • • • • • •                |                                              |                                         |
|            |                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                        |                                              |                                         |
|            |                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                        |                                              |                                         |
|            |                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                        |                                              |                                         |
|            |                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                        | •                                            |                                         |
|            |                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                        |                                              |                                         |
|            |                                                                                                                                                                                                                                                                                                                                                               | G                                                              |                                                        |                                              |                                         |
|            |                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                        | • • • • • • • • • • • • •                    | . <b>.</b>                              |
|            |                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                        |                                              | • • • • • • • • • • • • • • •           |
|            |                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                        | ,                                            |                                         |
|            |                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                        |                                              |                                         |
| ١.         | A car of mass M kg and constant power P kW moves downwa to the horizontal. There is a constant resistance of $R$ (> instant, the acceleration of the car is $a \text{ m s}^{-2}$ . Find the velo                                                                                                                                                              | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the               | g a straight<br>N to its m<br>e car at thi             | road of<br>otion. A<br>s instant             | inclinatio<br>t a certai                |
| <b>i</b> . | A car of mass M kg and constant power P kW moves downwa<br>to the horizontal. There is a constant resistance of $R$ (><br>instant, the acceleration of the car is $a \text{ m s}^{-2}$ . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>1000P1                                                                              | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclinatio<br>t a certai<br>he road i   |
| I.         | A car of mass M kg and constant power P kW moves downwa<br>to the horizontal. There is a constant resistance of $R$ (><br>instant, the acceleration of the car is $a \text{ m s}^{-2}$ . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R-Mg\sin\alpha} \text{ m s}^{-1}$ .                                   | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclinatio<br>t a certai<br>he road i   |
| <b>I</b> . | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downwa<br>to the horizontal. There is a constant resistance of <i>R</i> (><br>instant, the acceleration of the car is $a \text{ m s}^{-2}$ . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R-Mg\sin\alpha} \text{ m s}^{-1}$ .                | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>totion. A<br>s instant<br>along t | inclinatio<br>t a certai<br>he road i   |
| ŧ.         | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downw<br>$\alpha$ to the horizontal. There is a constant resistance of <i>R</i> (><br>instant, the acceleration of the car is $\alpha$ m s <sup>-2</sup> . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R-Mg\sin\alpha}$ m s <sup>-1</sup> . | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclinatio<br>t a certai<br>he road i   |
| ł.         | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downw<br>$\alpha$ to the horizontal. There is a constant resistance of <i>R</i> (><br>instant, the acceleration of the car is $\alpha$ m s <sup>-2</sup> . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R-Mg\sin\alpha}$ m s <sup>-1</sup> . | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move d   | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclinatio<br>t a certai<br>he road i   |
| <b>I</b> . | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downw<br>$\alpha$ to the horizontal. There is a constant resistance of <i>R</i> (><br>instant, the acceleration of the car is $\alpha$ m s <sup>-2</sup> . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R-Mg\sin\alpha}$ m s <sup>-1</sup> . | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclination<br>t a certain<br>he road i |
| ŧ.         | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downw<br>$\alpha$ to the horizontal. There is a constant resistance of <i>R</i> (><br>instant, the acceleration of the car is <i>a</i> m s <sup>-2</sup> . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R-Mg\sin\alpha}$ m s <sup>-1</sup> . | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclination<br>t a certain<br>he road i |
| <b>I</b> . | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downw<br>$\alpha$ to the horizontal. There is a constant resistance of <i>R</i> (><br>instant, the acceleration of the car is $\alpha$ m s <sup>-2</sup> . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R-Mg\sin\alpha}$ m s <sup>-1</sup> . | wards alon<br>$Mg \sin \alpha$ )<br>pocity of the<br>n move de | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclination<br>t a certain<br>he road i |
| <b>i</b> . | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downw<br>$\alpha$ to the horizontal. There is a constant resistance of <i>R</i> (><br>instant, the acceleration of the car is <i>a</i> m s <sup>-2</sup> . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R-Mg\sin\alpha}$ m s <sup>-1</sup> . | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclination<br>t a certain<br>he road i |
| ŧ.         | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downw<br>$\alpha$ to the horizontal. There is a constant resistance of <i>R</i> (><br>instant, the acceleration of the car is $\alpha$ m s <sup>-2</sup> . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R-Mg\sin\alpha}$ m s <sup>-1</sup> . | wards alon<br>$Mg \sin \alpha$ )<br>pocity of the<br>n move de | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclinatio<br>t a certai<br>he road i   |
| ŧ.         | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downw<br>$\alpha$ to the horizontal. There is a constant resistance of <i>R</i> (><br>instant, the acceleration of the car is $\alpha$ m s <sup>-2</sup> . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R-Mg\sin\alpha}$ m s <sup>-1</sup> . | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclination<br>t a certain<br>he road i |
| ŧ.         | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downwatter to the horizontal. There is a constant resistance of <i>R</i> (> instant, the acceleration of the car is $a \text{ m s}^{-2}$ . Find the velop <b>Deduce</b> that the constant speed with which the car car $\frac{1000P}{R-Mg\sin\alpha} \text{ m s}^{-1}$ .                       | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclinatio<br>t a certai<br>he road i   |
|            | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downwa to the horizontal. There is a constant resistance of <i>R</i> (> instant, the acceleration of the car is $a \text{ m s}^{-2}$ . Find the velo <b>Deduce</b> that the constant speed with which the car car $\frac{1000P}{R-Mg\sin\alpha} \text{ m s}^{-1}$ .                            | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclinatio<br>t a certai<br>he road i   |
| ł.         | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downwa<br>to the horizontal. There is a constant resistance of <i>R</i> (><br>instant, the acceleration of the car is a m s <sup>-2</sup> . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R-Mg\sin\alpha}$ m s <sup>-1</sup> .                | wards alon<br>$Mg \sin \alpha$ )<br>pocity of the<br>n move de | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclination<br>t a certain<br>he road i |
| ł.         | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downwa<br>to the horizontal. There is a constant resistance of <i>R</i> (><br>instant, the acceleration of the car is $a \text{ m s}^{-2}$ . Find the velo<br><b>Deduce</b> that the constant speed with which the car car<br>$\frac{1000P}{R - Mg \sin \alpha} \text{ m s}^{-1}$ .            | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along ti | inclination<br>t a certain<br>he road i |
| ł.         | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downwatter to the horizontal. There is a constant resistance of <i>R</i> (> instant, the acceleration of the car is $a \text{ m s}^{-2}$ . Find the velo <b>Deduce</b> that the constant speed with which the car car $\frac{1000P}{R-Mg\sin\alpha} \text{ m s}^{-1}$ .                        | wards alon<br>$Mg \sin \alpha$ )<br>ocity of the<br>n move de  | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclination<br>t a certain<br>he road i |
| <b>J</b> . | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downwa to the horizontal. There is a constant resistance of <i>R</i> (> instant, the acceleration of the car is $a \text{ m s}^{-2}$ . Find the velo <b>Deduce</b> that the constant speed with which the car car $\frac{1000P}{R - Mg \sin \alpha} \text{ m s}^{-1}$ .                        | wards alon<br>$Mg \sin \alpha$ )<br>pocity of the<br>n move de | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclination<br>t a certain<br>he road i |
| i.         | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downwa to the horizontal. There is a constant resistance of <i>R</i> (> instant, the acceleration of the car is $a \text{ m s}^{-2}$ . Find the velo <b>Deduce</b> that the constant speed with which the car car $\frac{1000P}{R - Mg \sin \alpha} \text{ m s}^{-1}$ .                        | wards alon<br>$Mg \sin \alpha$ )<br>pocity of the<br>n move de | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along t  | inclinatio<br>t a certai<br>he road i   |
|            | A car of mass <i>M</i> kg and constant power <i>P</i> kW moves downwa to the horizontal. There is a constant resistance of <i>R</i> (> instant, the acceleration of the car is $a \text{ m s}^{-2}$ . Find the velo <b>Deduce</b> that the constant speed with which the car car $\frac{1000P}{R-Mg\sin\alpha} \text{ m s}^{-1}$ .                            | wards alon<br>$Mg \sin \alpha$ )<br>pocity of the<br>n move de | g a straight<br>N to its m<br>e car at thi<br>ownwards | road of<br>otion. A<br>s instant<br>along ti | inclination<br>t a certain<br>he road i |

ank SriL tions, **Department of Examin** 

| 5.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|              | Two particles, $A$ and $B$ , each of mass $m$ , attached to the two ends of a light inextensible<br>string which passes over a smooth fixed pulley, hang in equilibrium. A small bead<br>C, also of mass $m$ , released from rest from a point at a distance $a$ vertically above<br>A, moves freely under gravity and collides and coalesces with $A$ . (See the figure.)<br>Write down equations sufficient to determine the impulse of the string at the instant<br>of the collision between $A$ and $C$ , and the velocity acquired by $B$ just after the above<br>collision. |                                       |
|              | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AB                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M m                                   |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| ĺ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ••••••                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·····                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| 0.           | with respect to a fixed origin O. Find the position vectors of two points A and<br>such that $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ and $OC = OD = \frac{1}{3}AB$ .                                                                                                                                                                                                                                                                                                                                                                                                              | b, respectively, oints $C$ and $D$    |
|              | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| F            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · |
| 11-11-11-1-1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |

[see page five www.MathsApi.com

| AI | /2019/10/E-II(NEW) - 5 -                                                                                                                                                                                                                                                                                                                                                          | _             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 7. | A particle P of weight W, suspended from a horizontal ceiling by two light inextensible strings AP and BP making angles $\alpha$ and $\frac{\pi}{3}$ with the horizontal, respectively, is in                                                                                                                                                                                     | í.            |
|    | equilibrium as shown in the figure. Find the tension in                                                                                                                                                                                                                                                                                                                           |               |
|    | the string AP in terms of W and $\alpha$ .                                                                                                                                                                                                                                                                                                                                        |               |
|    | Hence, find the minimum value of this tension and the corresponding value of $\alpha$ .                                                                                                                                                                                                                                                                                           |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   | Ö.            |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   | •••           |
|    |                                                                                                                                                                                                                                                                                                                                                                                   | •,            |
|    |                                                                                                                                                                                                                                                                                                                                                                                   | •••           |
|    |                                                                                                                                                                                                                                                                                                                                                                                   | •••           |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   | •••           |
|    |                                                                                                                                                                                                                                                                                                                                                                                   | • • •         |
|    | placed on a rough horizontal floor and the end <i>B</i> against a smooth<br>vertical wall. The rod is kept in equilibrium in a vertical plane<br>perpendicular to the wall by a horizontal force of magnitude<br><i>P</i> applied at the end <i>A</i> towards the wall. In the figure, <i>F</i> and<br><i>R</i> denote the frictional force and the normal reaction at <i>A</i> , |               |
|    | respectively. If the reaction at B from the wall is $\frac{W}{2}$ as shown                                                                                                                                                                                                                                                                                                        | <b>∢</b><br>D |
|    | in the figure and the coefficient of friction between the rod and                                                                                                                                                                                                                                                                                                                 |               |
|    | the floor is $\frac{1}{4}$ , show that $\frac{W}{4} \le P \le \frac{3W}{4}$ .                                                                                                                                                                                                                                                                                                     |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   | ••••          |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                             |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                   |               |

| 9.                                                                                          | Let A and B be two events of a sample space Q. In the neural notation it is shown it                                                                          |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                             | $P(A) = \frac{3}{2}$ $P(A \cap P) = \frac{2}{2}$ is preserved a sample space sz. In the usual notation, it is given the                                       |
|                                                                                             | $P(A) = \frac{1}{5}$ , $P(A + B) = \frac{1}{5}$ and $P(A' + B) = \frac{1}{10}$ . Find $P(B)$ and $P(A' + B')$ ; where A' and E                                |
|                                                                                             | denote complementary events of A and B, respectively.                                                                                                         |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             | ·····                                                                                                                                                         |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             |                                                                                                                                                               |
|                                                                                             | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their                                                                 |
|                                                                                             | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| I.                                                                                          | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| I.                                                                                          | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| •                                                                                           | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| ۱ <b>.</b>                                                                                  | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| •                                                                                           | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| •                                                                                           | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| -                                                                                           | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| •<br>•<br>•                                                                                 | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
|                                                                                             | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| ·<br>·<br>·<br>·                                                                            | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| •<br>•<br>•<br>•                                                                            | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| •                                                                                           | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| ·<br>·<br>·<br>·                                                                            | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| ·<br>·<br>·<br>·                                                                            | Five positive integers each of which is less than 5, have two modes, one of which is 3. Theimean, and median are both equal to 3. Find these five integers.   |
|                                                                                             | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| ·<br>·<br>·<br>·                                                                            | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
|                                                                                             | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
|                                                                                             | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| ·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>· | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| ·<br>·<br>·<br>·<br>·                                                                       | Five positive integers each of which is less than 5, have two modes, one of which is 3. Their mean, and median are both equal to 3. Find these five integers. |
| ·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>· | Five positive integers each of which is less than 5, have two modes, one of which is 3. Thei mean, and median are both equal to 3. Find these five integers.  |

# 2900



ations of Exar ebartr

ŧ 10 0

#### AL/2019/10/E-II(NEW)

8 -

(b) A smooth narrow tube ABCDE is fixed in a vertical plane as shown in the figure. The portion AB of length  $2\sqrt{3}a$  is straight and tangential at B to the circular portion BCDE of radius 2a. The ends A and E lie vertically above the centre O. A particle P of mass m is placed inside the tube at A and gently released from rest. Show that the speed vof the particle P when  $\overrightarrow{OP}$  makes an angle  $\theta\left(\frac{\pi}{3} < \theta < 2\pi\right)$  with  $\overrightarrow{OA}$ is given by  $v^2 = 4ga(2 - \cos \theta)$  and find the reaction on the particle P from the tube at this instant. Also, find the reaction on the particle P from the tube in its motion from A to B. Show that the reaction on the particle P from the tube changes abruptly when the particle P passes through B. 13. The points O, A and B lie in that order, with O lowermost, on a line of greatest slope of a smooth fixed plane inclined at an angle  $\frac{\pi}{6}$  to the horizontal 2a such that OA = a and AB = 2a. One end of a light elastic string of natural length a and modulus of elasticity mg is attached to the point O and the other end to a particle P of mass m. The string is pulled along the line OAB until the particle P reaches the point B. Then the particle P is released from rest. Show that the equation of motion of P from B to A is given by  $\ddot{x} + \frac{g}{a}\left(x + \frac{a}{2}\right) = 0$  for  $0 \le x \le 2a$ , where AP = x. Let  $y = x + \frac{a}{2}$  and rewrite the above equation of motion in the form  $\ddot{y} + \omega^2 y = 0$  for  $\frac{a}{2} \le y \le \frac{5a}{2}$ , where  $\omega = \sqrt{\frac{g}{a}}$ . Find the centre of the above simple harmonic motion and using the formula  $\dot{y}^2 = \omega^2 (c^2 - y^2)$ , find the amplitude c and the velocity of P when it reaches A. Show that the velocity of P when it reaches O is  $\sqrt{7ga}$ . Show also that the time taken by P to move from B to O is  $\sqrt{\frac{a}{B}} \left\{ \cos^{-1}\left(\frac{1}{5}\right) + 2k \right\}$ , where  $k = \sqrt{7} - \sqrt{6}$ . When the particle P reaches O, it strikes a smooth barrier fixed at O perpendicular to the plane. The coefficient of restitution between P and the barrier is e. Show that if  $0 < e \le \frac{1}{\sqrt{2}}$ , then the subsequent motion of P will not be simple harmonic. 14. (a) Let OACB be a parallelogram and let D be the point on AC such that AD:DC=2:1. The position vectors of points A and B with respect to O are  $\lambda a$  and b, respectively, where  $\lambda > 0$ . Express the vectors  $\overrightarrow{OC}$  and  $\overrightarrow{BD}$  in terms of **a**, **b** and  $\lambda$ .

Now, let  $\overrightarrow{OC}$  be perpendicular to  $\overrightarrow{BD}$ . Show that  $3|\mathbf{a}|^2 \lambda^2 + 2(\mathbf{a} \cdot \mathbf{b})\lambda - |\mathbf{b}|^2 = 0$  and

find the value of  $\lambda$ , if  $|\mathbf{a}| = |\mathbf{b}|$  and  $A\hat{O}B = \frac{\pi}{3}$ .

see page nine

#### AL/2019/10/E-II(NEW)

(b) A system consists of three forces in the plane of a regular hexagon ABCDEF of centre O and side of length 2a. Forces and their points of action, in the usual notation, are shown in the table below, with the origin at O, the Ox-axis along  $\overrightarrow{OB}$  and the Oy-axis along  $\overrightarrow{OH}$ , where H is the mid-point of CD. (P is measured in newtons and a is measured in metres.)

. 9

| Point of Action | <b>Position Vector</b> | Force                                |
|-----------------|------------------------|--------------------------------------|
| A               | ai−√3aj                | $3P\mathbf{i} + \sqrt{3}P\mathbf{j}$ |
| · C             | ai+√3aj                | –3Pi + √3Pj                          |
| E               | -2 <i>a</i> i          | -2√3Pj                               |

Show that the system is equivalent to a couple and find the moment of the couple.

Now, an additional force of magnitude 6P N acting along  $\overrightarrow{FE}$  is introduced to this system. Find the magnitude, direction and the line of action of the single force to which the new system reduces.

15.(a) Two uniform rods AB and BC, each of length 2a are jointed smoothly at B. The rod AB is of weight W and the rod BC is of weight 2W. The end A is hinged smoothly to a fixed point. This system is kept in equilibrium in a vertical plane with rods AB and BC making angles  $\alpha$  and  $\beta$ , respectively, with the downward vertical by a force  $\frac{W}{2}$  applied at C in the direction perpendicular to BC shown in the figure. Show that  $\beta = \frac{\pi}{6}$  and find the horizontal and the vertical components of the reaction at the joint B on the rod BC exerted from the rod AB.

Also, show that  $\tan \alpha = \frac{\sqrt{3}}{9}$ .

(b) Framework shown in the figure consists of five light rods AB, BC, BD, DC and AC smoothly jointed at their ends. Here, it is given that AB = CB = a, CD = 2a and  $B\hat{A}C = \frac{\pi}{6}$ . Framework is smoothly hinged at A to a fixed point. A load W is suspended at the joint D, and the framework is kept in equilibrium in a vertical plane with AC vertical and CD horizontal by a force P parallel to the rod AB, applied at the joint C in the direction shown in the figure. Draw a stress diagram, using Bow's notation, for the joints D, B, and C.

Hence, find

- (i) the stresses in the five rods, stating whether they are tensions or thrusts, and
- (ii) the value of P.



16. Show that the centre of mass of

- (i) a thin uniform semi-circular wire of radius a is at a distance  $\frac{2a}{\pi}$  from its centre, and
- (ii) a thin uniform hemispherical shell of radius a is at a distance  $\frac{a}{2}$  from its centre.

A spoon is made by rigidly fixing, to a thin uniform hemispherical shell of centre O and radius 2a, a thin handle ABCD made of uniform wire consisting of a straight piece AB of length  $2\pi a$  and a semi-circular piece BCD of radius a, such that the diameter BD is perpendicular to AB, as shown in the figure. The point A lies on the rim of the hemisphere, OA is perpendicular to AB, and OD is parallel to AB. Also, BCD lies in the plane of OABD. The mass per unit area

of the hemisphere is  $\sigma$  and the mass per unit length of the handle is  $\frac{a\sigma}{2}$ .

Show that the centre of mass of the spoon lies at a distance  $\frac{2}{19\pi} (8\pi - 2\pi^2 - 1)a$ below OA, and a distance  $\frac{5}{19}a$  from the line passing through O and D.

The spoon is placed on a rough horizontal table with the hemispherical surface touching it. The coefficient of friction between the hemispherical surface and the  $\frac{1}{2}$ 

table is  $\frac{1}{7}$ . Show that the spoon can be kept in equilibrium with OD vertical by a horizontal force applied at A in the direction of  $\overrightarrow{AO}$ .

- 17.(a) Initially a box contains 3 balls identical in all aspects except for their colour, each of which is either white or black. Now, one white ball identical to balls in the box in all aspects except for its colour, is added into the box and then one ball is drawn at random from the box. Assuming that the four possible initial compositions of the balls in the box are equally likely, find the probability that
  - (i) the ball drawn is white, and
  - (ii) initially there were exactly 2 black balls in the box, given that the ball drawn is white.
  - (b) Let the mean and the standard deviation of the set of values  $\{x_i : i = 1, 2, ..., n\}$  be  $\mu$  and  $\sigma$  respectively. Find the mean and the standard deviation of the set of values  $\{\alpha x_i : i = 1, 2, ..., n\}$ , where  $\alpha$  is a constant.

Monthly salaries of 50 employees at a certain company are summarised in the following table:

| Monthly Salary<br>(in thousand rupees) | Number of<br>Employees |
|----------------------------------------|------------------------|
| 5 - 15                                 | 9                      |
| 15 — 25                                | 11                     |
| 25 - 35                                | 14                     |
| 35 - 45                                | 10                     |
| 45 — 55                                | 6                      |

Estimate the mean and the standard deviation of the monthly salaries of the 50 employees.

At the beginning of a year, the monthly salary of each employee is increased by p%. It is given that the mean of the new monthly salaries of the above 50 employees is 29172 rupees. Estimate the value of p and the standard deviation of the new monthly salaries of the 50 employees.

\*\*\*

B

# G.C.E. (A.L.) Examination - 2019 10 - Combined Mathematics II (New Syllabus)

### **Distribution of Marks**

### Paper II

Part A :  $10 \times 25 = 250$ Part B :  $05 \times 150 = 750$ 

#### Total = 1000 / 10

Paper II Final Mark = 100

1. Three particles A, B and C, each of mass m, are placed in that order, in a straight line on a smooth horizontal table. The particle A is given a velocity u such that it collides directly with the particle B. After colliding with the particle A, the particle B moves and collides directly with the particle C. The coefficient of restitution between A and B is e. Find the velocity of B after the first collision.

The coefficient of restitution between B and C is also e. Write down the velocity of C after its collision with B.

Applying  $\underline{I} = \Delta(\underline{my})$ , for A and  $B(1^{st} \text{ collision}) \rightarrow :$  0 = mv + mw - mu (5)  $\Rightarrow v + w = u$  (i) Newton's law of restitution : v - w = eu (ii) (5)  $\therefore$  (i) + (ii)  $\Rightarrow v = \frac{(1 + e)}{2}u$  (5)  $\therefore$  velocity of B after  $1^{st}$  collision  $= \frac{1}{2}(1 + e)u$ . Replacing u by v, we get the velocity of C after its collision with  $B = \frac{1}{2}(1 + e)v$  (5)  $= \frac{1}{4}(1 + e)^{2}u$  (5)

2. A particle is projected from a point O on a horizontal floor with a velocity whose horizontal and vertical components are  $\sqrt{ga}$  and  $\sqrt{6ga}$ , respectively. The particle just clears two vertical walls of heights a and b which are at a horizontal distance a apart, as shown in the figure. Show that the vertical component of the velocity of the particle when it passes the wall of height a is  $2\sqrt{ga}$ . Show further that  $b = \frac{5a}{2}$ .

Suppose that the particle passes the wall of height a with vertical velocity



- 3 -

- 4 -

3. In the figure, A, B and C are particles of masses m, m and M, respectively. The particles A and B are connected by a light inextensible string. The particle C, lying on a smooth horizontal table, is connected to B by another light inextensible string passing over a smooth small pulley fixed at the edge of the table. The particles and the strings all lie in the same vertical plane. The system is released from rest with the strings taut. Write down equations sufficient to determine the tension of the string joining A and B.





4. A car of mass M kg and constant power P kW moves downwards along a straight road of inclination  $\alpha$  to the horizontal. There is a constant resistance of  $R (>Mg \sin \alpha)$  N to its motion. At a certain instant, the acceleration of the car is  $\alpha$  m s<sup>-2</sup>. Find the velocity of the car at this instant. Deduce that the constant speed with which the car can move downwards along the road is  $\frac{1000P}{R - Mg \sin \alpha} \text{ m s}^{-1}.$ 

When the speed of the car is  $v ms^{-1}$ 

tractive force  $F = \frac{1000 P}{v}$  (5)

At the instant when the acceleration is  $a ms^{-2}$ ,

Applying 
$$F = ma$$
 :

$$\checkmark F + Mg \sin \alpha - R = Ma.$$
 (10)

$$\Rightarrow \frac{1000 P}{v} + Mg \sin \alpha - R = Ma$$
  
$$\therefore v = \frac{1000 P}{R - Mg \sin \alpha + Ma}$$
 (5)

When the car is moving with constant speed,

a = 0 and the value of constant speed

$$v = \frac{1000 P}{R - Mg \sin \alpha} \cdot$$
 **5**



5. Two particles, A and B, each of mass m, attached to the two ends of a light inextensible string which passes over a smooth fixed pulley, hang in equilibrium. A small bead C, also of mass m, released from rest from a point at a distance a vertically above A, moves freely under gravity and collides and coalesces with A. (See the figure.) Write down equations sufficient to determine the impulse of the string at the instant of the collision between A and C, and the velocity acquired by B just after the above collision.



Applying  $v^2 = u^2 + 2as \downarrow$ , the

velocity acquired by C after falling through a distance a is

 $u = \sqrt{2ga}$  (5)

Let J be the impules in the string at the instant of collision

of C and A and v be the velocity of B, just after collision.

Then, applying  $\underline{I} = \Delta(\underline{mv})$ 

for B:  $\uparrow J = mv$ . **5** For A and C:  $\downarrow -J = (m + m)v - mu$ . **10** 

i.e  $-J = 2mv - m\sqrt{2ga}$ .



6. In the usual notation, let 2i + j and 3i - j be the position vectors of two points A and B, respectively, with respect to a fixed origin O. Find the position vectors of the two distinct points C and D such that  $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$  and  $OC = OD = \frac{1}{3}AB$ .

C

A

B

o C

Note that

$$\overrightarrow{OA} = 2\mathbf{i} + \mathbf{j}$$

$$\overrightarrow{OB} = 3\mathbf{i} - \mathbf{j}$$

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$$

$$= -(2\mathbf{i} + \mathbf{j}) + (3\mathbf{i} - \mathbf{j})$$

$$= \mathbf{i} - 2\mathbf{j} \qquad \mathbf{5}$$

$$\therefore AB = \sqrt{1 + 4} = \sqrt{5}$$
Let  $\overrightarrow{OC} = x\mathbf{i} + y\mathbf{i}$ 
Since  $\overrightarrow{OA} \perp \overrightarrow{OC}$ ,  $(2\mathbf{i} + \mathbf{j}) \cdot (x\mathbf{i} + y\mathbf{j}) = 0$ 

$$\therefore y = -2x \qquad \mathbf{5}$$
Since  $OC = \frac{1}{3}AB$ ,  $\sqrt{x^2 + 4x^2} = \frac{1}{3}\sqrt{5} \qquad \mathbf{5}$ 

$$\therefore x^2 = \frac{1}{9}.$$

These equations are valid for the coordinates of D as well.

So, 
$$x = \pm \frac{1}{3}$$
  

$$\Rightarrow x = \frac{1}{3}$$

$$y = -\frac{2}{3}$$

$$x = -\frac{1}{3}$$

$$y = \frac{2}{3}$$

$$y = \frac{2}{3}$$

$$5$$

$$y = \frac{2}{3}$$

Hence the vectors C and D are  $\frac{1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j}$  and  $-\frac{1}{3}\mathbf{i} + \frac{2}{3}\mathbf{j}$ .

25

- 7 -

7. A particle P of weight W, suspended from a horizontal ceiling by two light inextensible strings AP and BP making angles  $\alpha$  and  $\frac{\pi}{3}$  with the horizontal, respectively, is in equilibrium as shown in the figure. Find the tension in the string AP in terms of W and  $\alpha$ .

A  $\frac{\pi}{3}$  B  $\frac{\pi}{3}$  B

Hence, find the minimum value of this tension and the corresponding value of  $\alpha$ .

By Lami's theorem



 $\begin{array}{c} \alpha & \frac{\pi}{3} \\ \hline \mathbf{5} & T_1 \\ W \end{array}$ 

Hence the minimum value of the tension  $T_1$  in  $AP = \frac{W}{2}$ , and the value of  $\alpha$  corresponding to minimum of  $T_1$  is,  $\alpha = \frac{\pi}{6}$ . (5)

8. A uniform rod *AB* of length 2*a* and weight *W* has its end *A* placed on a rough horizontal floor and the end *B* against a smooth vertical wall. The rod is kept in equilibrium in a vertical plane perpendicular to the wall by a horizontal force of magnitude *P* applied at the end *A* towards the wall. In the figure, *F* and *R* denote the frictional force and the normal reaction at *A*, respectively. If the reaction at *B* from the wall is  $\frac{W}{2}$  as shown in the figure and the coefficient of friction between the rod and the floor is  $\frac{1}{4}$ , show that  $\frac{W}{4} \le P \le \frac{3W}{4}$ .



For the equilibrium of the rod :

Resolving 
$$ightharpoondown Resolving  $ightharpoondown R - W = 0.$  (5)  
 $\longrightarrow P + F - \frac{W}{2} = 0.$  (5)  
 $\therefore F = \frac{W}{2} - P$  (5)  
 $\because |F| \le \mu R, \text{ we have}$   
(5)  
 $\left|\frac{W}{2} - P\right| \le \frac{1}{4} W$   
 $\Rightarrow -\frac{1}{4} W \le \frac{W}{2} - P \le \frac{1}{4} W$   
 $\Rightarrow \frac{W}{4} \le P \le \frac{3W}{4}$  (5)$$

$$P(B) = P((A \cap B) \cup (A' \cap B)) = P(A \cap B) + P(A' \cap B)$$

$$= \frac{2}{5} + \frac{1}{10} \cdot \cdot \cdot P(B) = \frac{1}{2} \cdot \cdot \cdot \cdot 5$$

$$P(A' \cap B') = P((A \cup B)') = 1 - P(A \cup B) \cdot \cdot \cdot 5$$

$$= 1 - [P(A) + P(B) - P(A \cap B)] \cdot \cdot 5$$

$$= 1 - [\frac{3}{5} + \frac{1}{2} - \frac{2}{5}]$$

$$= 1 - \frac{7}{10}$$

$$\therefore P(A' \cap B') = \frac{3}{10} \cdot \cdot 5$$

$$25$$

With median = 3, and two distinct modes, five numbers which are less five, in ascending order can be arranged in the following two possible ways.

Since their sum is 15 as the mean is 3,

we have, 
$$2a + 10 = 15$$
;  $a = \frac{5}{2}$ , # **5**  
or  $b + 14 = 15$ ;  $b = 1$ . **5**

 $\therefore \quad \text{Five numbers are 1, 3, 3, 4, 4} \quad \textbf{(5)}$ 

11. (a) Two cars P and Q move with constant accelerations in the same direction along a straight road. At time t = 0 the velocity of P is  $u \text{ m s}^{-1}$  and the velocity of Q is  $(u + 9) \text{ m s}^{-1}$ . The constant acceleration of P is  $f \text{ m s}^{-2}$  and the constant acceleration of Q is  $\left(f + \frac{1}{10}\right) \text{ m s}^{-2}$ . Sketch the velocity-time graphs for (i) the motions of P and Q for  $t \ge 0$ , in the same diagram, and (ii) the motion of Q relative to P for  $t \ge 0$ , in a separate diagram. Further, it is given that at time t = 0 the car P is 200 metres ahead of the car Q. Find the time taken by Q to overtake P. (b) A river of breadth a with parallel straight banks flows with uniform velocity u. In the figure, the points A, B, C and D lying on the banks are the vertices of a square. Two boats  $B_1$  and  $B_2$  moving with constant speed v > u relative to water begin their journeys at the same instant from A. The boat  $B_1$  first travels to C along  $\overline{AC}$  and then to D in the direction  $\overrightarrow{CD}$  upward along the river. The boat  $B_2$  first travels to B in the direction  $\overrightarrow{AB}$  downwards along the river and then to D along BD. Sketch the velocity triangles for the motions of  $B_1$  from A to C and of  $B_2$  from B to D in the same diagram. Hence, show that the speed of the boat  $B_1$  in its motion from A to C is  $\frac{1}{\sqrt{2}} \left( \sqrt{2v^2 - u^2} + u \right)$ and find the speed of the boat  $B_2$  in its motion from B to D.

Further, show that both boats  $B_1$  and  $B_2$  reach D at the same instant.



Let *T* be the time taken by *Q* to overtake *P*.  $\therefore \frac{1}{2}T(9+9+\frac{1}{10}T) =$ 5 200  $T^2$  + 180 T - 4000 = 5 0 (T-20)(T+200) =0 Since T > 0, T = 20. (5) 25 *(b)* CD u , B A Note that  $V(B_1, E) = \sqrt{\frac{\pi}{4}}, \quad (5) \quad V(B_2, E) = \frac{\pi}{4}$  (5)  $\mathbf{V}(W, E) = \rightarrow u, \quad (5)$  $R_1$  $V(B_i, W) = v$ , for i = 1, 2. *R*<sub>2</sub> L  $\mathbf{V}(B_i, E) = \mathbf{V}(B_i, W) + \mathbf{V}(W, E)$ (10)  $= \mathbf{V}(W, E) + \mathbf{V}(B_i, W)$ 0 =  $\overrightarrow{PQ} + \overrightarrow{QR}_i$  i = 1, 2=  $\overrightarrow{PR}_i$ , i = 1, 2(15 55 In  $\Delta PQR_1$ ,  $PR_1 = PL + LR_1$ 

$$= \frac{u}{\sqrt{2}} + \sqrt{v^2 - \left(\frac{u}{\sqrt{2}}\right)^2}$$
$$= \frac{1}{\sqrt{2}} \left[\sqrt{2v^2 - u^2} + u\right] \quad \textbf{10}$$

Hence the speed of 
$$B_1$$
, from A to C is  $\frac{1}{\sqrt{2}} \left( \sqrt{2v^2 - u^2} + u \right)$ 

In  $\triangle PQR_2$ ,

$$PR_{2} = MR_{2} - MP = \sqrt{v^{2} - \left(\frac{u}{\sqrt{2}}\right)^{2}} - \frac{u}{\sqrt{2}}$$
$$= \frac{1}{\sqrt{2}} \left(\sqrt{2v^{2} - u^{2}} - u\right) \qquad (10)$$

Time taken by  $B_1$  for its motion from A to C along  $\overrightarrow{AC}$  and then from C to D along  $\overrightarrow{CD}$  is

$$T_1 = \frac{a\sqrt{2}}{PR_1} + \frac{a}{v-u} \cdot$$
**5**

Time taken by  $B_2$  for its motion from A to B along  $\overrightarrow{AB}$  and then from B to D along  $\overrightarrow{BD}$  is  $T_1 = -\frac{a}{1+\frac{a\sqrt{2}}{5}}$ 

$$T_{2} = \frac{a}{v+u} + \frac{a\sqrt{2}}{PR_{2}}$$

$$T_{2} - T_{1} = a\sqrt{2} \left(\frac{1}{PR_{2}} - \frac{1}{PR_{1}}\right) - a\left(\frac{1}{v-u} - \frac{1}{v+u}\right)$$

$$= a\sqrt{2} \left(\frac{PR_{1} - PR_{2}}{PR_{1} \cdot PR_{2}}\right) - \frac{2au}{v^{2} - u^{2}}$$

$$= \frac{a\sqrt{2} \cdot \sqrt{2} u}{\frac{1}{2} \left[(2v^{2} - u^{2}) - u^{2}\right]} - \frac{2au}{v^{2} - u^{2}}$$

$$= \frac{2au}{v^{2} - u^{2}} - \frac{2au}{v^{2} - u^{2}}$$

$$= 0.$$

$$(5)$$

Hence, both boats  $B_1$  and  $B_2$  reach their destination D at the same instant.

- 12. (a) The triangles ABC and LMN in the figure, are vertical cross-sections through the centres of gravity of two identical smooth uniform wedges X and Y respectively, with  $\hat{ACB} = L\hat{N}M = \frac{\pi}{3}$  and  $\hat{ABC} = L\hat{M}N = \frac{\pi}{3}$ such that the faces containing BC and MN are placed on a L smooth horizontal floor. The wedge X of mass 3m is free to move on the floor and the wedge Y is kept fixed. The lines AC and LN are the lines of greatest slope of the relevant faces. Two тČ 2mends of a light inextensible string passing over two smooth X small pulleys fixed at A and L, are attached to particles P and 3m Q of masses m and 2m, respectively. At the initial position, the М Bparticles P and Q are held on AC and LN respectively such that AP = AL = LQ = a and the string taut, as in the figure. The system is released from rest. Obtain equations sufficient to determine the time taken by X to reach Y in terms of a and g.
  - (b) A smooth narrow tube ABCDE is fixed in a vertical plane as shown in the figure. The portion AB of length  $2\sqrt{3}a$  is straight and tangential at B to the circular portion BCDE of radius 2a. The ends A and E lie vertically above the centre O. A particle P of mass m is placed inside the tube at A and gently released from rest. Show that the speed v of the particle P when  $\overrightarrow{OP}$  makes an angle  $\theta\left(\frac{\pi}{3} < \theta < 2\pi\right)$  with  $\overrightarrow{OA}$

is given by  $v^2 = 4ga(2 - \cos \theta)$  and find the reaction on the particle *P* from the tube at this instant.

Also, find the reaction on the particle P from the tube in its motion from A to B.

Show that the reaction on the particle P from the tube changes abruptly when the particle P passes through B.



For motion of P;

$$\frac{\pi}{3}$$
  $T - mg \frac{\sqrt{3}}{2} = m (f - F + \frac{F}{2})$  (10)

For motion of Q;

$$\frac{\pi}{3}$$
 2 mg  $\frac{\sqrt{3}}{2}$  - T = 2mf (10)

Time *t* taken by *X* to reach *Y* is given by

$$a = \frac{1}{2}Ft^2$$
 (10)  $(s = ut + \frac{1}{2}at^2 \rightarrow \text{for } X)$  80



Applying the principle of conservtion of energy for particle *P* :

$$\frac{1}{2}mv^{2} + mg(2a\cos\theta) = 0 + mg. 4a$$
 (15)  

$$\Rightarrow v^{2} = 4ga(2 - \cos\theta), \frac{\pi}{3} < \theta < 2\pi$$
 (5)  
For circular motion, inside the tube,  $\mathbf{F} = \mathbf{ma}$  (4)  

$$mg\cos\theta + R = \frac{mv^{2}}{2a} = 2mg(2 - \cos\theta)$$
 (10) + (5)  

$$\Rightarrow R = mg(4 - 3\cos\theta) > 0$$
 (1) (5)  

$$\therefore$$
 This reaction is towards the centre O.
For motion inside the straight tube,  $\mathbf{F} = \mathbf{m}a$  ? :

$$\begin{bmatrix} \pi & S \\ mg & S - mg \cos \frac{\pi}{3} = m \ (0) \\ S = \frac{mg}{2} \quad (5) \\ The reaction just before reaching  $B = \frac{mg}{2} \quad (5) \\ The reaction just after passing  $B = \frac{5}{2} mg \quad (5) \\ Hence, there is an abrupt change in the reaction from  $\frac{mg}{2}$  to  $\frac{5}{2}mg$  in the magnitude as well as in the direction from outward to inward.  $(5)$$$$$

13. The points O, A and B lie in that order, with O lowermost, on a line of greatest slope of a smooth fixed plane inclined at an angle  $\frac{\pi}{6}$  to the horizontal such that OA = a and AB = 2a. One end of a light elastic string of natural length a and modulus of elasticity mg is attached to the point O and the other end to a particle P of mass m. The string is pulled along the line OAB until the particle P reaches the point B. Then the particle P is released from rest.



Show that the equation of motion of P from B to A is given by  $\ddot{x} + \frac{g}{a}\left(x + \frac{a}{2}\right) = 0$  for  $0 \le x \le 2a$ , where AP = x.

Let  $y = x + \frac{a}{2}$  and rewrite the above equation of motion in the form  $\ddot{y} + \omega^2 y = 0$  for  $\frac{a}{2} \le y \le \frac{5a}{2}$ , where  $\omega = \sqrt{\frac{g}{a}}$ .

Find the centre of the above simple harmonic motion and using the formula  $\dot{y}^2 = \omega^2 \left(c^2 - y^2\right)$ , find the amplitude c and the velocity of P when it reaches A.

Show that the velocity of P when it reaches O is  $\sqrt{7ga}$ .

Show also that the time taken by P to move from B to O is  $\sqrt{\frac{a}{g}} \left\{ \cos^{-1}\left(\frac{1}{5}\right) + 2k \right\}$ , where  $k = \sqrt{7} - \sqrt{6}$ .

When the particle P reaches O, it strikes a smooth barrier fixed at O perpendicular to the plane. The coefficient of restitution between P and the barrier is e. Show that if  $0 < e \le \frac{1}{\sqrt{7}}$ , then the subsequent motion of P will not be simple harmonic.



Equation of motion of  $P: \underline{F} = \underline{ma} \nvDash$ ;

/

$$T + mg\frac{1}{2} = m(-\ddot{x}) - (i)$$

$$T = mg\left(\frac{x}{d}\right) - (ii)$$
(5)

(i) and (ii)  $\Rightarrow \quad \ddot{x} + \frac{g}{a} \left( x + \frac{a}{2} \right) = 0, \quad 0 \le x \le 2a.$ 

Writing 
$$y = x + \frac{a}{2}$$
,  $\ddot{y} = \ddot{x}$ , we get (5)  
 $\ddot{y} + \omega^2 y = 0$ ,  $\frac{a}{2} \le y \le \frac{5a}{2}$ , (5)  
where  $\omega^2 = \frac{g}{a}$ .  
(10)  
Centre *C* of SHM is given by  $\ddot{x} = 0$ . i.e.  $y = 0$  or  $x = \frac{-a}{2}$ . (5) + (5)

So, point *C* on *OA* such that  $OC = \frac{a}{2}$ , (Mid – Point of *OA*).

Amplitude c is given by the formula

$$\dot{y}^2 = \omega^2 (c^2 - y^2)$$
, where  $\omega^2 = \frac{g}{a}$ .  
 $\dot{y} = 0$  when  $y = \frac{5a}{2}$  (at *B*). (5)  
 $\therefore 0 = \omega^2 (c^2 - (\frac{5a}{2})^2) \Rightarrow c = \frac{5a}{2}$ . (5)

Let *u* be the velocity when the particle reaches the point *A*.

At 
$$A \quad y = \frac{a}{2}, \ u^2 = \frac{g}{a} \left( \left(\frac{5a}{2}\right)^2 - \left(\frac{a}{2}\right)^2 \right).$$
 (5) + (5)  
 $\Rightarrow \quad u = \sqrt{6ga}.$  (35)  
(35)

## Motion of P from A to O

This motion is under gravity on the plane.



Time taken by P to move from B to A, under SHM

$$\omega t_1 = \alpha . \quad (5) \text{ Now } \cos \alpha = \frac{\frac{a}{2}}{\frac{5a}{2}} = \frac{1}{5} . \quad (5)$$

$$\therefore t_1 = \sqrt{\frac{a}{g}} (\cos^{-1}(\frac{1}{5})). \quad (5)$$
Now, time taken by *P* to move from *A* to *O*:
$$Applying v = u + at : \quad (5)$$

$$k' \sqrt{7ga} = \sqrt{6ga} + \frac{g}{2} t_2$$

$$\therefore t_2 = 2\sqrt{\frac{a}{g}} (\sqrt{7} - \sqrt{6}) \quad (5) = 2k\sqrt{\frac{a}{g}}, \text{ where } k = \sqrt{7} - \sqrt{6}.$$

$$\therefore \text{ Total time, from B to O is \quad (5)$$

$$t_1 + t_2 = \sqrt{\frac{a}{g}} (\cos^{-1}(\frac{1}{5}) + 2k), \text{ where } k = \sqrt{7} - \sqrt{6}.$$

$$35$$
Just after striking the smooth barrier at *O*, speed of *P* is  $ev = e\sqrt{7ga}$ 

$$\int \frac{\pi}{6}$$
The subsequent motion of the particle will not be simple harmonic

if  $0 \le z \le a$ , where z is the distance travelled up the plane under

gravity. 10  
Applying 
$$v^2 = u^2 + 2as$$
:  
 $\checkmark 0 = (ev)^2 - 2(\frac{g}{2})z$  5  
 $\Rightarrow z = 7e^2a$  5  
Now,  $0 < z \le a$   
 $\Leftrightarrow 0 < 7e^2a \le a$  5  
 $\Leftrightarrow 0 < e \le \frac{1}{\sqrt{7}}$  5

14. (a) Let OACB be a parallelogram and let D be the point on AC such that AD:DC=2:1. The position vectors of points A and B with respect to O are  $\lambda a$  and b, respectively, where  $\lambda > 0$ . Express the vectors  $\overrightarrow{OC}$  and  $\overrightarrow{BD}$  in terms of a, b and  $\lambda$ .

Now, let  $\overrightarrow{OC}$  be perpendicular to  $\overrightarrow{BD}$ . Show that  $3|\mathbf{a}|^2 \lambda^2 + 2(\mathbf{a} \cdot \mathbf{b})\lambda - |\mathbf{b}|^2 = 0$  and

find the value of  $\lambda$ , if  $|\mathbf{a}| = |\mathbf{b}|$  and  $A\hat{O}B = \frac{\pi}{3}$ .

(b) A system consists of three forces in the plane of a regular hexagon ABCDEF of centre O and side of length 2a. Forces and their points of action, in the usual notation, are shown in the table below, with the origin at O, the Ox-axis along  $\overrightarrow{OB}$  and the Oy-axis along  $\overrightarrow{OH}$ , where H is the mid-point of CD. (P is measured in newtons and a is measured in metres.)

| Point of Action | Position Vector                     | Force                                |
|-----------------|-------------------------------------|--------------------------------------|
| A               | $a\mathbf{i} - \sqrt{3}a\mathbf{j}$ | $3P\mathbf{i} + \sqrt{3}P\mathbf{j}$ |
| С               | ai+√3aj                             | $-3Pi + \sqrt{3}Pj$                  |
| E               | -2 <i>a</i> i                       | –2√3 <i>P</i> j                      |

Show that the system is equivalent to a couple and find the moment of the couple.

Now, an additional force of magnitude 6P N acting along  $\overrightarrow{FE}$  is introduced to this system. Find the magnitude, direction and the line of action of the single force to which the new system reduces.



Subtituting in the above equation



15. (a) Two uniform rods AB and BC, each of length 2a are jointed smoothly at B. The rod AB is of weight W and the rod BC is of weight 2W. The end A is hinged smoothly to a fixed point. This system is kept in equilibrium in a vertical plane with rods AB and BC making angles  $\alpha$  and  $\beta$ , respectively, with the downward vertical by a force  $\frac{W}{2}$  applied at C in the direction perpendicular to BC shown in the figure. Show that  $\beta = \frac{\pi}{6}$  and find the horizontal and the vertical components of the reaction at the joint B on the rod BC exerted from the rod AB.

Also, show that  $\tan \alpha = \frac{\sqrt{3}}{9}$ .

(b) Framework shown in the figure consists of five light rods AB, BC, BD, DC and AC smoothly jointed at their ends. Here, it is given that AB = CB = a, CD = 2a and  $B\hat{A}C = \frac{\pi}{6}$ . Framework is smoothly hinged at A to a fixed point. A load W is suspended at the joint D, and the framework is kept in equilibrium in a vertical plane with AC vertical and CD horizontal by a force P parallel to the rod AB, applied at the joint C in the direction shown in the figure. Draw a stress diagram, using Bow's notation, for the joints D, B, and C.

## Hence, find

- (i) the stresses in the five rods, stating whether they are tensions or thrusts, and
- (ii) the value of P.



С



 $P = up = \frac{4W}{\sqrt{3}}$ 

(10



(i) <u>Semi - circular wire</u>



By symmetry, the centre of mass G lies on Ox - axis.

 $\Delta m = a \Delta \theta \rho$ , where  $\rho$  is the mass per unit length

5

Let 
$$OG = \overline{x}$$
. Then  
 $\overline{x} = \frac{\sqrt{2}}{-\frac{\pi}{2}} \frac{a\rho a\cos\theta \,\mathrm{d}\theta}{a\rho \,\mathrm{d}\theta}$  (5) + (5)  
 $= \frac{a\sin\theta \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}}{\theta \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}}$  (5)  
 $= \frac{2a}{\pi}$  (5)

Hence, the centre of mass is at A distance  $\frac{2a}{\pi}$  from O.



Ox- axis along OA and Oy - axis along OD.



| Object                            | Mass                                   | Distance from  | Distance from             |   |
|-----------------------------------|----------------------------------------|----------------|---------------------------|---|
| Object                            | 111255                                 | <i>OD</i> (→)  | <i>OA</i> (↓)             |   |
| Straight piece AB                 | $\pi a^2 \sigma$ <b>5</b>              | 2a             | πα                        | 5 |
| Semi circular<br>piece <i>BCD</i> | $\frac{\pi a^2 \sigma}{2}  \textbf{5}$ | а              | $2\pi a + \frac{2a}{\pi}$ | 5 |
| Hemispherical shell               | 8πа <sup>2</sup> σ 5                   | 0              | - a                       | 5 |
| Spoon                             | $\frac{19\pi a^2\sigma}{2}$ (5)        | $\overline{x}$ | <u>y</u>                  |   |

$$\frac{19\pi a^2\sigma}{2} \quad \overline{y} = \pi a^2\sigma \cdot \pi a + \frac{\pi a^2\sigma}{2} \left(2\pi a + \frac{2a}{\pi}\right) + 8\pi a^2\sigma(-a) \quad \boxed{10}$$
$$\frac{19\pi}{2} \quad \overline{y} = -8\pi a + 2\pi a + a \quad \boxed{5}$$
$$\therefore \quad \overline{y} = \frac{-2}{19\pi} (8\pi - 2\pi^2 - 1)a$$

 $\therefore$  centre of mass of the spoon lies at *A* distance

$$\frac{2}{19\pi}$$
 (8 $\pi$  - 2 $\pi^2$  - 1) *a* below *OA*.

- $\frac{19\pi a^2\sigma}{2} \ \overline{x} = \pi a^2\sigma. \ 2a + \frac{\pi a^2\sigma}{2} \ . \ a + 8\pi a^2\sigma. \ 0 \ (10)$
- $\therefore \quad \frac{19}{2} \,\overline{x} \qquad = \quad 2a + \frac{a}{2} \qquad = \quad \frac{5a}{2}$

$$\therefore \ \overline{x} = \frac{5a}{19}$$
 (5)

:. centre of mass of the spoon lies at A distance  $\frac{5a}{19}$  from OD.



Hence, the spoon can be kept is equilibrium.

- 17. (a) Initially a box contains 3 balls identical in all aspects except for their colour, each of which is either white or black. Now, one white ball identical to balls in the box in all aspects except for its colour, is added into the box and then one ball is drawn at random from the box. Assuming that the four possible initial compositions of the balls in the box are equally likely, find the probability that
  - (i) the ball drawn is white, and
  - (ii) initially there were exactly 2 black balls in the box, given that the ball drawn is white.
  - (b) Let the mean and the standard deviation of the set of values  $\{x_i : i = 1, 2, ..., n\}$  be  $\mu$  and  $\sigma$  respectively. Find the mean and the standard deviation of the set of values  $\{\alpha x_i : i = 1, 2, ..., n\}$ , where  $\alpha$  is a constant.

Monthly salaries of 50 employees at a certain company are summarised in the following table:

| Monthly Salary<br>(in thousand rupees) | Number of<br>Employees |
|----------------------------------------|------------------------|
| 5 - 15                                 | 9                      |
| 15 - 25                                | 11                     |
| 25 - 35                                | 14                     |
| 35 - 45                                | 10                     |
| 45 — 55                                | 6                      |

Estimate the mean and the standard deviation of the monthly salaries of the 50 employees.

At the beginning of a year, the monthly salary of each employee is increased by p%. It is given that the mean of the new monthly salaries of the above 50 employees is 29 172 rupees. Estimate the value of p and the standard deviation of the new monthly salaries of the 50 employees.

(a) Let  $E_i$  be the initial composition of the box with *i* number of white balls, for

i = 0, 1, 2, 3.

Then  $P(E_i) = \frac{1}{4}$  for i = 0, 1, 2, 3

Let *W* be the event that the ball drawn at random is white.

Then

(i) 
$$P(W) = \sum_{i=0}^{3} P(W | E_i) P(E_i)$$
 (10)  
=  $\frac{1}{4} \times \frac{1}{4} + \frac{2}{4} \times \frac{1}{4} + \frac{3}{4} \times \frac{1}{4} \times \frac{4}{4} \times \frac{1}{4}$  (10)  
=  $\frac{5}{8}$  (5)  
25

(ii) By Bayes theorem,

$$P(E_1 | W) = \frac{P(W | E_1) P(E_1)}{P(W)}$$
 (10)



|                                        |    | (5)         |                     |       | (5)             | (5)               |
|----------------------------------------|----|-------------|---------------------|-------|-----------------|-------------------|
| Monthly salary<br>(in thousand rupees) | f  | Mid Point x | $y = \frac{1}{10}x$ | $y^2$ | fy              | $fy^2$            |
| 5 - 15                                 | 9  | 10          | 1                   | 1     | 9               | 9                 |
| 15 - 25                                | 11 | 20          | 2                   | 4     | 22              | 44                |
| 25 - 35                                | 14 | 30          | 3                   | 9     | 42              | 126               |
| 35 - 45                                | 10 | 40          | 4                   | 16    | 40              | 160               |
| 45 - 55                                | 6  | 50          | 5                   | 25    | 30              | 150               |
|                                        | 50 |             |                     |       | $\sum fx = 143$ | $\sum fx^2 = 489$ |
|                                        |    |             |                     |       | (5)             | (5)               |

 $\mu_{y} = \frac{\sum fy}{\sum f} = \frac{143}{50} \text{ and } \sigma_{y}^{2} = \frac{\sum fy^{2}}{\sum f} - \mu_{y}^{2} = \frac{489}{50} - \left(\frac{143}{50}\right)^{2} \quad (5)$   $\sigma_{y} = \frac{\sqrt{4001}}{50} \quad (5)$ 

Using previous results :

$$\mu_{x} = 10\mu_{y} = 10 \left(\frac{143}{50}\right) = 28.6 \text{ thousand rupees} \qquad (5)$$

$$(= 28600 \text{ rupees})$$
and  $\sigma_{x} = 10\sigma_{y} = \frac{\sqrt{4001}}{5} \approx 12.65 \text{ thousand rupees} \qquad (5)$ 

$$(\approx 12650 \text{ rupees}) \qquad (5)$$
New monthly salary :  $z = x + \frac{p}{100} x = \left(1 + \frac{p}{100}\right) x$ , where x is the previous
monthly salary. (5)  
Using Previous results :  $\mu_{z} = \left(1 + \frac{p}{100}\right) \mu_{x}$ 

$$29172 = \left(1 + \frac{p}{100}\right) 28600 \qquad (5)$$

$$\Rightarrow \frac{29172}{286} = 100 + p \qquad \therefore p = 2 \qquad (5)$$
 $\sigma_{z} \approx \left(1 + \frac{2}{100}\right) \sigma_{x}$ 

$$\approx \frac{51}{50} \times 12.65 \qquad (5)$$

$$\approx 12.9 \text{ thousand rupees}$$

$$(\approx 12900 \text{ rupees}) \qquad (20)$$

# G.C.E. (A.L.) Examination - 2019 10 - Combined Mathematics I (New Syllabus)

# **Distribution of Marks**

## Paper I

Part A :  $10 \times 25 = 250$ Part B :  $05 \times 150 = 750$ 

## Total = 1000 / 10

Paper I Final Mark = 100

## Common Techniques of Marking Answer Scripts.

It is compulsory to adhere to the following standard method in marking answer scripts and entering marks into the mark sheets.

- 1. Use a red color ball point pen for marking. (Only Chief/Additional Chief Examiner may use a mauve color pen.)
- 2. Note down Examiner's Code Number and initials on the front page of each answer script.
- 3. Write off any numerals written wrong with a clear single line and authenticate the alterations with Examiner's initials.
- 4. Write down marks of each subsection in a  $\triangle$  and write the final marks of each question as a rational number in a with the question number. Use the column assigned for Examiners to write down marks.



### MCQ answer scripts: (Template)

- 1. Marking templets for G.C.E.(A/L) and GIT examination will be provided by the Department of Examinations itself. Marking examiners bear the responsibility of using correctly prepared and certified templates.
- 2. Then, check the answer scripts carefully. If there are more than one or no answers Marked to a certain question write off the options with a line. Sometimes candidates may have erased an option marked previously and selected another option. In such occasions, if the erasure is not clear write off those options too.
- 3. Place the template on the answer script correctly. Mark the right answers with a 'V' and the wrong answers with a 'X' against the options column. Write down the number of correct answers inside the cage given under each column. Then, add those numbers and write the number of correct answers in the relevant cage.

#### Structured essay type and assay type answer scripts:

- 1. Cross off any pages left blank by candidates. Underline wrong or unsuitable answers. Show areas where marks can be offered with check marks.
- 2. Use the right margin of the overland paper to write down the marks.
- 3. Write down the marks given for each question against the question number in the relevant cage on the front page in two digits. Selection of questions should be in accordance with the instructions given in the question paper. Mark all answers and transfer the marks to the front page, and write off answers with lower marks if extra questions have been answered against instructions.
- 4. Add the total carefully and write in the relevant cage on the front page. Turn pages of answer script and add all the marks given for all answers again. Check whether that total tallies with the total marks written on the front page.

#### Preparation of Mark Sheets.

Except for the subjects with a single question paper, final marks of two papers will not be calculated within the evaluation board this time. Therefore, add separate mark sheets for each of the question paper. Write paper 01 marks in the paper 01 column of the mark sheet and write them in words too. Write paper II Marks in the paper II Column and wright the relevant details. For the subject 51 Art, marks for Papers 01, 02 and 03 should be entered numerically in the mark sheets.

\*\*\*

1. Using the Principle of Mathematical Induction, prove that  $\sum_{r=1}^{n} (2r-1) = n^2$  for all  $n \in \mathbb{Z}^+$ .

For n = 1, L.H.S. =  $2 \times 1 - 1 = 1$  and R.H.S. =  $1^2 = 1$  (5)

 $\therefore$  The result is true for n = 1.

Take any  $p \in \mathbb{Z}^+$  and assume that the result is true for n = p.

i.e. 
$$\sum_{r=1}^{p} (2r-1) = p^2$$
. (5)  
Now  $\sum_{r=1}^{p+1} (2r-1) = \sum_{r=1}^{p} (2r-1) + (2(p+1)-1)$  (5)  
 $= p^2 + (2p+1)$   
 $= (p+1)^2$ . (5)

Hence, if the result is true for n = p, then it is true for n = p + 1. We have already proved that the result is true for n = 1.

Hence, by the Principle of Mathematical Induction, the result is true for all  $n \in \mathbb{Z}^+$ . (5)

25

Confidential

2. Sketch the graphs of y=|4x-3| and y=3-2|x| in the same diagram. Hence or otherwise, find all real values of x satisfying the inequality |2x-3|+|x|<3.



At the point of intersections of the graphs

$$4x - 3 = 3 - 2x \implies x = 1$$
 (5)  
$$-4x + 3 = 3 + 2x \implies x = 0$$

From the graphs, we have,

- $|4x-3| < 3-2 |x| \qquad \Leftrightarrow \quad 0 < x < 1$
- $\therefore |4x-3| + |2x| < 3 \qquad \Leftrightarrow \quad 0 < x < 1$

Replacing x by  $\frac{x}{2}$ , we get  $|2x-3| + |x| < 3 \iff 0 <$ 

$$|2x-3| + |x| < 3 \iff 0 < x < 2.$$
 (5)

Hence, the set of all values of *x* satisfying

$$|2x-3| + |x| < 3$$
 is  $\{x : 0 < x < 2\}$ . (5)

Aliter For the graphs (5) + (5), as before. <u>Aliter for values of x</u> |2x-3| + |x| < 3<u>Case (i)</u>  $x \le 0$ : Then  $|2x-3| + |x| < 3 \iff -2x + 3 - x < 3$  $\Leftrightarrow$  3x > 0  $\Leftrightarrow x > 0$ Hence, in this case, no solutions exist. <u>Case (ii)</u>  $0 < x \le \frac{3}{2}$ Then  $|2x-3| + |x| < 3 \iff -2x + 3 + x < 3$  $\Leftrightarrow x > 0$ Hence, in this case, the solutions are the values of x satisfying  $0 < x \le \frac{3}{2}$ . <u>Case (iii)</u>  $x > \frac{3}{2}$ Then  $|2x-3| + |x| < 3 \iff 2x - 3 + x < 3$  $\Leftrightarrow 3x < 6$  $\Leftrightarrow x < 2$ Hence, in this case, the solutions are the values of x satisfying  $\frac{3}{2} < x < 2$ . All 3 cases with correct solutions (10)Any 2 cases with correct solutions 5 (5) Hence, over all, the solutions are values of x satisfying 0 < x < 2. 25 3. Sketch, in an Argand diagram, the locus of the points that represent complex numbers z satisfying  $\operatorname{Arg}(z-2-2i) = -\frac{3\pi}{4}$ .

Hence or otherwise, find the minimum value of  $|i\overline{z}+1|$  such that  $\operatorname{Arg}(z-2-2i) = -\frac{3\pi}{4}$ .



5

Note that

$$|i\overline{z}+1| = |i(\overline{z}-i)| = |\overline{z}-i| = |\overline{z}+i|$$
$$= |z+i|$$
$$= |z-(-i)| \quad \textbf{5}$$
Hence, the minimum of  $|i\overline{z}+1|$  is equal to PM.  
Now, PM =  $1 \cdot \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \cdot \textbf{5}$ 

4. Show that the coefficient of  $x^6$  in the binomial expansion of  $\left(x^3 + \frac{1}{x^2}\right)^7$  is 35. Show also that there **does not exist** a term independent of x in the above binomial expansion.

$$\left(x^{3} + \frac{1}{x^{2}}\right)^{7} = \sum_{r=0}^{7} {}^{7}C_{r} (x^{3})^{r} \left(\frac{1}{x^{2}}\right)^{7-r}$$

$$= \sum_{r=0}^{7} {}^{7}C_{r} x^{5r-14}$$

$$x^{6} : 5r - 14 = 6 \iff r = 4.$$

$$(5)$$

$$\therefore \text{ The coefficient of } x^{6} = {}^{7}C_{4} = 35$$

$$(5)$$

For the above expansion to have a term independent of x, we must have

$$5r - 14 = 0.$$
 **5**  
This is not possible as  $r \in \mathbb{Z}^+$ . **5**

5. Show that 
$$\lim_{x \to 3} \frac{\sqrt{x-2}-1}{\sin(\pi(x-3))} = \frac{1}{2\pi}$$
.  

$$\lim_{x \to 3} \frac{\sqrt{x-2}-1}{\sin(\pi(x-3))} = \lim_{x \to 3} \frac{\sqrt{x-2}-1}{\sin(\pi(x-3))} \cdot \frac{(\sqrt{x-2}+1)}{(\sqrt{x-2}+1)}$$

$$= \lim_{x \to 3^{\infty}} \frac{x-3}{\sin(\pi(x-3))} \cdot \lim_{x \to 3} \frac{1}{(\sqrt{x-2}+1)}$$

$$= \lim_{x \to 3^{\infty}} \frac{1}{\frac{\sin(\pi(x-3))}{\pi(x-3)}} \cdot \frac{1}{\pi} \cdot \frac{1}{2}$$

$$= \frac{1}{2\pi} \cdot \frac{1}{2}$$

- 10 -

6. The region enclosed by the curves  $y = \sqrt{\frac{x+1}{x^2+1}}$ , x=0, x=1 and y=0 is rotated about the x-axis through  $2\pi$  radians. Show that the volume of the solid thus generated is  $\frac{\pi}{4}(\pi + \ln 4)$ .





7. Let C be the parabola parametrically given by  $x = at^2$  and y = 2at for  $t \in \mathbb{R}$ , where  $a \neq 0$ . Show that the equation of the normal line to the parabola C at the point  $(at^2, 2at)$  is given by  $y+tx=2at+at^3$ .

The normal line at the point  $P \equiv (4a, 4a)$  on the parabola C meets this parabola again at a point  $Q \equiv (aT^2, 2aT)$ . Show that T = -3.

$$x = at^{2}, y = 2at$$

$$\frac{dx}{dt} = 2at, \frac{dy}{dt} = 2a$$

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = 2a \cdot \frac{1}{2at} = \frac{1}{t} \text{ for } t \neq 0. \quad (5)$$

 $\therefore$  The slope of the normal line = -t

The equation of the normal at  $(at^2, 2at)$  is

$$y - 2at = -t (x - at^{2})$$
  

$$y + tx = 2at + at^{3}$$
 (5) (This is valid for  $t = 0$  also.)  

$$P = (4a, 4a) \text{ on } C \implies t = 2.$$

The normal line at P: y + 2x = 4a + 8a = 12a (5)

Since it meets C at  $(aT^2, 2aT)$ , we have

$$2aT + 2aT^{2} = 12a.$$

$$\Leftrightarrow T^{2} + T - 6 = 0 \Leftrightarrow (T - 2) (T + 3) = 0$$

$$\Leftrightarrow T = 2 \text{ or } T = -3$$

$$\therefore T = -3$$

$$5$$



Any point on the line  $l_1$  can be written in the form

 $(t, 4 - t), t \in \mathbb{R} \cdot 5$ Let  $P = (t_1, 4 - t_1)$ Perpendicular distance from P to  $l_2 = \frac{|4t_1 + 3(4 - t_1) - 10|}{\sqrt{4^2 + 3^2}} = 1$   $\therefore |t_1 + 2| = 5$   $\therefore t_1 = -7 \text{ or } t_1 = 3 \quad 5$ The coordinates of P and Q are  $(-7, 11) \text{ and } (3, 1). \quad 5 + 5$ 

The centre C of S = 0 is (2, -3). (5) The radius R of S = 0 is  $\sqrt{4+9+12} = \sqrt{25} = 5$ . (5)  $CA^{2} = 9^{2} + 12^{2} = 15^{2} \Rightarrow CA = 15 > R = 5$ . (5)

 $\therefore$  Point *A* lies outside the given circle.



The point on the circle S = 0 nearest to point A is the point P at which CA meets S = 0. Note that CP : PA = 5:10= 1:2 5

$$P = \left(\frac{2 \times 2 + 1 (-7)}{3}, \frac{2 (-3) + 1 \times 9}{3}\right)$$
  
i.e.  $P = (-1, 1)$  5

10. Let 
$$t = \tan \frac{\theta}{2}$$
 for  $\theta \neq (2n+1)\pi$ , where  $n \in \mathbb{Z}$ . Show that  $\cos \theta = \frac{1-t^2}{1+t^2}$ .  
Deduce that  $\tan \frac{\pi}{12} = 2 - \sqrt{3}$ .

$$\cos \theta = \cos^{2} \frac{\theta}{2} - \sin^{2} \frac{\theta}{2} \quad (5)$$

$$= \frac{\cos^{2} \frac{\theta}{2} - \sin^{2} \frac{\theta}{2}}{\cos^{2} \frac{\theta}{2} + \sin^{2} \frac{\theta}{2}} = \frac{1 - \tan^{2} \frac{\theta}{2}}{1 + \tan^{2} \frac{\theta}{2}} \quad \text{for } \theta \neq (2n + 1) \pi.$$

$$= \frac{1 - t^{2}}{1 + t^{2}}$$
Let  $\theta = \frac{\pi}{6}$ . Then  $\sqrt{\frac{3}{2}} = \frac{1 - t^{2}}{1 + t^{2}}$ 

$$(5)$$

$$\Rightarrow \sqrt{3} (1 + t^{2}) = 2 (1 - t^{2})$$

$$(2 + \sqrt{3}) t^{2} = 2 - \sqrt{3}$$

$$\therefore t^{2} = \frac{(2 - \sqrt{3})}{(2 + \sqrt{3})} \quad (5)$$

$$= (2 - \sqrt{3})^{2}$$

$$\Rightarrow t = \tan \frac{\pi}{12} = 2 - \sqrt{3} \quad (\because \tan \frac{\pi}{12} > 0)$$

11. (a) Let  $p \in \mathbb{R}$  and  $0 . Show that 1 is not a root of the equation <math>p^2x^2 + 2x + p = 0$ . Let  $\alpha$  and  $\beta$  be the roots of this equation. Show that  $\alpha$  and  $\beta$  are both real. Write down  $\alpha + \beta$  and  $\alpha\beta$  in terms of p, and show that  $\frac{1}{(\alpha - 1)} \cdot \frac{1}{(\beta - 1)} = \frac{p^2}{p^2 + p + 2}.$ Show also that the quadratic equation whose roots are  $\frac{\alpha}{\alpha-1}$  and  $\frac{\beta}{\beta-1}$  is given by  $(p^2+p+2)x^2-2(p+1)x+p=0$  and that both of these roots are positive. (b) Let c and d be two non-zero real numbers and let  $f(x) = x^3 + 2x^2 - dx + cd$ . It is given that (x-c) is a factor of f(x) and that the remainder when f(x) is divided by (x-d) is cd. Find the values of c and d. For these values of c and d, find the remainder when f(x) is divided by  $(x + 2)^2$ . Suppose that 1 is a root of  $p^2 x^2 + 2x + p = 0$ . (*a*) By substituting x = 1, we must have  $p^2 + 2 + p = 0$ . (5) This is impossible, as p > 0 implies that  $p^2 + 2 + p > 0$ . (5) 10  $\therefore$  1 is not a root of  $p^2 x^2 + 2x + p = 0$ The discriminant  $\Delta = 2^2 - 4p^2$ . p  $= 4(1-p^3)$  $\geq 0 (:: 0 (5)$  $\therefore \alpha \text{ and } \beta \text{ are both real.} (5)$ 20  $\alpha + \beta = -\frac{2}{p^2}$  and  $\alpha \beta = \frac{1}{p}$  (5) + (5) Now,  $\frac{1}{(\alpha-1)} \cdot \frac{1}{(\beta-1)} = \frac{1}{(\alpha\beta-(\alpha+\beta)+1)}$ (5  $= \frac{1}{\frac{1}{p} + \frac{2}{p^2} + 1}$  $= \frac{p^2}{p^2 + p + 2} \cdot$ 20

- 15 -

Now

$$\frac{a}{a-1} + \frac{\beta}{\beta-1} = \frac{a(\beta-1)+\beta(a-1)}{(a-1)(\beta-1)}$$

$$= \frac{2a\beta-(a+\beta)}{(a-1)(\beta-1)} \quad (5)$$

$$= \left(\frac{2}{p} + \frac{2}{p^2}\right) \cdot \frac{p^2}{p^2+p+2} \quad (5)$$

$$= \frac{2(p+1)}{p^2} \cdot \frac{p^2}{p^2+p+2}$$

$$= \frac{2(p+1)}{p^2+p+2} \quad (5)$$

$$\frac{a}{a-1} \cdot \frac{\beta}{\beta-1} = \frac{a\beta}{(a-1)(\beta-1)}$$

$$= \frac{1}{p} \cdot \frac{p^2}{p^2+p+2}$$

and

$$\frac{\alpha}{\alpha - 1} \cdot \frac{\beta}{\beta - 1} = \frac{\alpha\beta}{(\alpha - 1)(\beta - 1)}$$
$$= \frac{1}{p} \cdot \frac{p^2}{p^2 + p + 2}$$
$$= \frac{p}{p^2 + p + 2} \cdot 5$$

Hence, the required quadratic equation is given by

$$x^{2} - \frac{2(p+1)}{p^{2} + p + 2} x + \frac{p}{p^{2} + p + 2} = 0$$
 (10)  
$$\Rightarrow \quad (p^{2} + p + 2) x^{2} - 2 (p+1) x + p = 0$$
 (5)  
35

Moreover, note that  $\frac{\alpha}{(\alpha-1)}$  and  $\frac{\beta}{(\beta-1)}$  are both real,

$$\frac{\alpha}{(\alpha-1)} + \frac{\beta}{(\beta-1)} = \frac{2(p+1)}{p^2 + p + 2} > 0, \quad (\because p > 0),$$
and
$$\frac{\alpha}{(\alpha-1)} \cdot \frac{\beta}{(\beta-1)} = \frac{p}{p^2 + p + 2} > 0, \quad (\because p > 0).$$
Hence, both of these roots are possitive.
$$5$$

(b) 
$$f(x) = x^{3} + 2x^{2} - dx + cd$$
  
Since  $(x - c)$  is a factor,  $f(c) = 0$ . (5)  
 $\Rightarrow c^{3} + 2c^{2} - dc + cd = 0$  (5)  
 $\Rightarrow c^{2} (c + 2) = 0$   
 $\Rightarrow c = -2$  ( $\because c \neq 0$ ) (5)

Since, when f(x) is divided by (x - d), the remainder is *cd*, we have

$$f(d) = cd.$$

Let Ax + B be the remainder, when f(x) is divided by  $(x + 2)^2$ .

Then  $f(x) = (x + 2)^2 Q(x) + (Ax + B)$ , where Q(x) is a polynomial of degree 1.

So, 
$$x^{3} + 2x^{2} + x + 2 = (x + 2)^{2} Q(x) + Ax + B.$$
 (5)  
Substituting  $x = -2$ , we obtain  $0 = -2A + B.$  (5)

By differentiating, we have

$$3x^{2} + 4x + 1 = (x + 2)^{2} Q'(x) + 2Q(x)(x + 2) + A.$$
 (5)

Again by substituting x = -2, we obtain



Aliter

By long division we have,

$$x^{2} + 4x + 4 \qquad x - 2$$

$$x^{2} + 4x + 4 \qquad x^{3} + 2x^{2} + x + 2$$

$$x^{3} + 4x^{2} + 4x$$

$$-2x^{2} - 3x + 2$$

$$-2x^{2} - 8x - 8$$

$$5x + 10.$$

$$x^{3} + 2x^{2} + x + 2 = (x^{2} + 4x + 4) (x - 2) + (5x + 10)$$

$$\therefore \text{ Required remainder is } 5x + 10.$$

$$10$$

$$25$$

12. (a) Let P<sub>1</sub> and P<sub>2</sub> be the two sets given by {A, B, C, D, E, 1, 2, 3, 4} and {F, G, H, I, J, 5, 6, 7, 8} respectively. It is required to form a password consisting of 6 elements taken from P<sub>1</sub> ∪ P<sub>2</sub> of which 3 are different letters and 3 are different digits. In each of the following cases, find the number of different such passwords that can be formed:
(i) all 6 elements are chosen only from P<sub>1</sub>,
(ii) 3 elements are chosen from P<sub>1</sub> and the other 3 elements from P<sub>2</sub>.
(b) Let U<sub>r</sub> = 1/(r(r+1)(r+3)(r+4)) and V<sub>r</sub> = 1/(r(r+1)(r+2)) for r∈Z<sup>+</sup>. Show that V<sub>r</sub>-V<sub>r+2</sub> = 6U<sub>r</sub> for r∈Z<sup>+</sup>.
Hence, show that ∑<sup>n</sup><sub>r=1</sub> U<sub>r</sub> = 5/(144) - ((2n+5))/(6(n+1)(n+2)(n+3)(n+4)) for n∈Z<sup>+</sup>.
Let W<sub>r</sub> = U<sub>2r-1</sub> + U<sub>2r</sub> for r∈Z<sup>+</sup>.
Deduce that ∑<sup>n</sup><sub>r=1</sub> W<sub>r</sub> = 5/(144) - ((4n+5))/(2(2n+1)(2n+3)) for n∈Z<sup>+</sup>.
Hence, show that the infinite series ∑<sup>∞</sup><sub>r=1</sub> W<sub>r</sub> is convergent and find its sum.

(a) 
$$P_1 = \{A, B, C, D, E, 1, 2, 3, 4\}$$
 and  $P_2 = \{F, G, H, I, J, 5, 6, 7, 8\}$ 

(i) The number of different ways of choosing 3 different letters and 3 different

digits from  $P_1 = {}^{5}C_3 \cdot {}^{4}C_3$  (10) Hence the number of passwords that can be formed by choosing all 6 elements from  $P_1$ 

$$= {}^{5}C_{3} \cdot {}^{4}C_{3} \cdot 6! \quad (5)$$
$$= 28800 \quad (5)$$

(ii)

|    |                                                                                       | Different ways of selecting |         |                     |         |  |
|----|---------------------------------------------------------------------------------------|-----------------------------|---------|---------------------|---------|--|
|    | Number of Passwords                                                                   | from P <sub>2</sub>         |         | from P <sub>1</sub> |         |  |
|    |                                                                                       | Digits                      | Letters | Digits              | Letters |  |
| 10 | ${}^{5}C_{3} \cdot {}^{4}C_{3} \cdot 6! = 28800$                                      | 3                           | -       | _                   | 3       |  |
| 10 | ${}^{5}C_{2} \cdot {}^{4}C_{1} \cdot {}^{5}C_{1} \cdot {}^{4}C_{2} \cdot 6! = 864000$ | 2                           | 1       | 1                   | 2       |  |
| 10 | ${}^{5}C_{1} \cdot {}^{4}C_{2} \cdot {}^{5}C_{2} \cdot {}^{4}C_{1} \cdot 6! = 864000$ | 1                           | 2       | 2                   | 1       |  |
| 10 | ${}^{4}C_{3} \cdot {}^{5}C_{3} \cdot 6 ! = 28800$                                     | _                           | 3       | 3                   | _       |  |

Hence, the number of different passwords that can be formed by choosing 3 elements

from 
$$P_1$$
 and the other 3 elements from  $P_2 = 28800 + 864000 + 864000 + 28800 = 1785600$   
(b)  $U_r = \frac{1}{r(r+1)(r+3)(r+4)}$  and  $V_r = \frac{1}{r(r+1)(r+2)}$ ;  $r \in \mathbb{Z}^+$ .  
Then,  
 $V_r = V_{r+2} = \frac{1}{r(r+1)(r+2)} - \frac{1}{(r+2)(r+3)(r+4)}$   
 $= \frac{(r+3)(r+4) - r(r+1)}{r(r+1)(r+2)(r+3)(r+4)}$   
 $= \frac{6(r+2)}{r(r+1)(r+2)(r+3)(r+4)}$   
 $= 6 U_r$  (5)

Now note that,

$$\therefore \ 6 \sum_{r=1}^{n} U_r = V_1 + V_2 - V_{n+1} - V_{n+2} \quad 10$$

$$= \frac{1}{6} + \frac{1}{24} - \frac{1}{(n+1)(n+2)(n+3)} - \frac{1}{(n+2)(n+3)(n+4)} \quad 5$$

$$= \frac{5}{24} - \frac{2n+5}{(n+1)(n+2)(n+3)(n+4)} \quad 5$$

$$\therefore \sum_{r=1}^{n} U_r = \frac{5}{144} - \frac{2n+5}{6(n+1)(n+2)(n+3)(n+4)} \quad 5$$

$$W_r = U_{2r-1} + U_{2r}, \quad r \in \mathbb{Z}^*.$$

$$\therefore \sum_{r=1}^{n} W_r = \sum_{r=1}^{n} (U_{2r-1} + U_{2r})$$

$$= \sum_{r=1}^{2n} U_r \quad 5$$

$$= \frac{5}{144} - \frac{4n+5}{6(2n+1)(2n+2)(2n+3)(2n+4)} \quad 5$$

$$10$$
Note that,
$$\lim_{n \to \infty} \sum_{r=1}^{n} W_r = \lim_{n \to \infty} \left( \frac{5}{144} - \frac{4n+5}{24(n+1)(n+2)(2n+1)(2n+3)} \right) \quad 5$$

$$= \frac{5}{144} - \lim_{n \to \infty} \frac{4n+5}{24(n+1)(n+2)(2n+1)(2n+3)}$$

$$= \frac{5}{144} - \lim_{n \to \infty} \frac{4n+5}{24(n+1)(n+2)(2n+1)(2n+3)}$$

$$= \frac{5}{144} - \lim_{n \to \infty} \frac{4n+5}{24(n+1)(n+2)(2n+1)(2n+3)}$$

$$= \frac{5}{144} \quad 5$$

$$\therefore \sum_{r=1}^{\infty} W_r \text{ is convergent and the sum is } \frac{5}{144}. \quad 5$$

$$15$$
13. (a) Let 
$$\mathbf{A} = \begin{pmatrix} a & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
,  $\mathbf{B} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -a & 4 \end{pmatrix}$  and  $\mathbf{C} = \begin{pmatrix} b & -2 \\ -1 & b+1 \end{pmatrix}$  be matrices such that  
 $\mathbf{AB^{T}} = \mathbf{C}$ , where  $a, b \in \mathbb{R}$ .  
Show that  $a = 2$  and  $b = 1$ .  
Show also that,  $\mathbf{C}^{-1}$  **does not** exist.  
Let  $\mathbf{P} = \frac{1}{2}(\mathbf{C} - 2\mathbf{I})$ . Write down  $\mathbf{P}^{-1}$  and find the matrix  $\mathbf{Q}$  such that  $2\mathbf{P}(\mathbf{Q} + 3\mathbf{I}) = \mathbf{P} - \mathbf{I}$ , where  
 $\mathbf{I}$  is the identity matrix of order 2.  
(b) Let  $z, z_1, z_2 \in \mathbb{C}$ .  
Show that (i)  $\operatorname{Re} z \leq |z|$ , and  
(ii)  $\left| \frac{z_1}{z_2} \right| = \left| \frac{|z_1|}{|z_2|} \right|$  for  $z_2 \neq 0$ .  
Deduce that  $\operatorname{Re}\left(\frac{z_1}{z_1 + z_2}\right) \leq \frac{|z_1|}{|z_1 + z_2|}$  for  $z_1 + z_2 \neq 0$ .  
Verify that  $\operatorname{Re}\left(\frac{z_1}{z_1 + z_2}\right) + \operatorname{Re}\left(\frac{z_2}{z_1 + z_2}\right) = 1$  for  $z_1 + z_2 \neq 0$ ,  
and show that  $|z_1 + z_2| \leq |z_1| + |z_2|$  for  $z_1, z_2 \in \mathbb{C}$ .  
(c) Let  $\omega = \frac{1}{2}(1 - \sqrt{3}i)$ .  
Express  $1 + \omega$  in the form  $r(\cos \theta + i\sin \theta)$ ; where  $r(>0)$  and  $\theta\left(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\right)$  are constants to be determined.  
Using De Moivre's theorem, show that  $(1 + \omega)^{10} + (1 + \overline{\omega})^{10} = 243$ .

(a) 
$$AB^{T} = \begin{pmatrix} a & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -a \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 2a-3 & a-4 \\ -1 & a \end{pmatrix}$$
  
(10)  
 $AB^{T} = C \iff \begin{pmatrix} 2a-3 & a-4 \\ -1 & a \end{pmatrix} = \begin{pmatrix} b & -2 \\ -1 & b+1 \end{pmatrix}$   
 $\Leftrightarrow 2a-3 = b, \quad a-4 = -2 \text{ and } a = b+1.$  (10)  
 $\Leftrightarrow a = 2 \text{ and } b = 1$ , (from any two equations above) and these values satisfy the remaining equation. (5)

,

$$C = \begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix}$$
$$\begin{vmatrix} 1 & -2 \\ -1 & 2 \end{vmatrix} = 0$$
 5  
$$\therefore C^{-1} \text{ does not exist.} 5$$

Aliter.  
For the existence of C<sup>-1</sup> :  
there must exist 
$$p, q, r, s \in \mathbb{R}$$
 such that  
 $\begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  (5)  
 $\Rightarrow p - 2r = 1, -p + 2r = 0, q - 2s = 0 \text{ and } -q + 2s = 1$   
This is a contradiction  
 $\therefore C^{-1}$  does not exist. (5) 10  
 $P = \frac{1}{2} (C - 2I) = \frac{1}{2} \left\{ \begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right\} = \frac{1}{2} \begin{pmatrix} -1 & -2 \\ -1 & 0 \end{pmatrix}$  (5)  
 $\Rightarrow P^{-1} = 2 \left( \frac{1}{-2} \right) \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ -1 & 1 \end{pmatrix}$  (10)  
 $2P (Q + 3I) = P - I$   
 $\Rightarrow 2 (Q + 3I) = I - P^{-1}$  (5)  
 $\therefore 2 (Q + 3I) = I - P^{-1}$  (5)  
 $\Rightarrow Q = \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$  (5)  
 $\Rightarrow Q = \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$  (5)  
 $\Rightarrow Q = \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$  (5)

10 - Combined Mathematics - I (Marking Scheme) New Syllabus | G.C.E.(A/L) Examination - 2019 | Amendments to be included.

(b)  $z, z_1, z_2 \in \mathbb{C}.$ 

(i) Let 
$$z = x + iy$$
,  $x, y \in \mathbb{R}$ .  
Re  $z = x \le \sqrt{x^2 + y^2} = |z|$  (5)

(ii) Let 
$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$
 and  $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ .

$$\Rightarrow \frac{z_1}{z_2} = \frac{r_1(\cos\theta_1 + i\sin\theta_1) \times (\cos\theta_2 - i\sin\theta_2)}{r_2(\cos\theta_2 + i\sin\theta_2) \times (\cos\theta_2 - i\sin\theta_2)} = \frac{r_1}{r_2} \frac{\left[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)\right]}{5}$$
$$\therefore \left|\frac{z_1}{z_2}\right| = \frac{r_1}{r_2} = \frac{|z_1|}{|z_2|} 5$$

$$\operatorname{Re}\left(\frac{z_{1}}{z_{1}+z_{2}}\right) \leq \left|\frac{z_{1}}{z_{1}+z_{2}}\right| = \frac{|z_{1}|}{|z_{1}+z_{2}|} \quad ; \text{ for } z_{1}+z_{2} \neq 0.$$

$$5 \quad \text{by (i)} \quad 5 \quad \text{by (ii)} \quad 10$$

## For $z_1 + z_2 \neq 0$ , we have

$$\frac{z_1}{z_1 + z_2} + \frac{z_2}{z_1 + z_2} = 1$$

$$Re\left(\frac{z_1}{z_1 + z_2} + \frac{z_2}{z_1 + z_2}\right) = 1$$

$$Re\left(\frac{z_1}{z_1 + z_2}\right) + Re\left(\frac{z_2}{z_1 + z_2}\right) = 1$$
**5**

-----

(*c*)

$$\rightarrow 1 = \operatorname{Re}\left(\frac{z_{1}}{z_{1}+z_{2}}\right) + \operatorname{Re}\left(\frac{z_{2}}{z_{1}+z_{2}}\right) \leq \left|\frac{z_{1}}{z_{1}+z_{2}}\right| + \left|\frac{z_{2}}{z_{1}+z_{2}}\right| \operatorname{by}\left(i\right) \quad (s)$$

$$= \frac{|z_{1}|+|z_{2}|}{|z_{1}+z_{2}|} + \frac{|z_{2}|}{|z_{1}+z_{2}|} \quad by\left(ii\right)$$

$$= \frac{|z_{1}|+|z_{2}|}{|z_{1}+z_{2}|} \quad (s)$$

$$\Rightarrow |z_{1}+z_{2}| \leq |z_{1}|+|z_{2}| \quad (\because |z_{1}+z_{2}| > 0)$$
Now if  $z_{1}+z_{2} = 0$ , then
$$|z_{1}+z_{2}| = 0 \leq |z_{1}|+|z_{2}|$$
Hence, the result is true for all  $z_{1}, z_{2} \in C$ . 10
$$\omega = \frac{1}{2} (1 - \sqrt{3} i)$$

$$1 + \omega = \sqrt{3} \left[ \sqrt{\frac{3}{2}} + i \left( -\frac{1}{2} \right) \right] = r (\cos \theta + i \sin \theta), \quad (s)$$
where  $r = \sqrt{3}$  and  $\theta = -\frac{\pi}{6}$ . (s)
$$1 + \overline{\omega} = 1 + \overline{\omega} = \sqrt{3} (\cos \theta - i \sin \theta) = \sqrt{3} \left[ \cos (-\theta) + i \sin (-\theta) \right]$$

$$\Rightarrow (1 + \overline{\omega})^{10} = (\sqrt{3})^{10} \left[ \cos (-10\theta) + i \sin (-10\theta) \right] \quad (s)$$

$$\therefore (1 + \omega)^{10} + (1 + \overline{\omega})^{10} = (\sqrt{3})^{10} \times 2 \cos (10\theta) \quad (s)$$

$$= 3^{3} \times 2 \times \frac{1}{2}$$

$$= 243. \quad (s)$$

14.(a) Let 
$$f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^3}$$
 for  $x \neq 3$ .  
Show that  $f'(x)$ , the derivative of  $f(x)$ , is given by  $f'(x) = -\frac{9(x + 3)(x - 5)}{(x - 3)^4}$  for  $x \neq 3$ .  
Sketch the graph of  $y = f(x)$  indicating the asymptotes, y-intercept and the turning points.  
It is given that  $f''(x) = \frac{18(x^2 - 33)}{(x - 3)^5}$  for  $x \neq 3$ .  
Find the x-coordinates of the points of inflection of the graph of  $y = f(x)$ .  
(b) The adjoining figure shows a basin in the form of a  
frustum of a right circular cone with a bottom. The  
shant length of the basin is 30 cm and the radius of the  
upper circular edge is twice the radius of the bottom.  
Let the radius of the bottom be r cm.  
Show that the volume V cm<sup>3</sup> of the basin is given by  
 $V = \frac{7}{3} \pi r^2 \sqrt{900 - r^2}$  for  $0 < r < 30$ .  
Find the value of r such that volume of the basin is  
maximum.

(a) For 
$$x \neq 3$$
;  $f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^3}$ 

Then

$$f'(x) = 9 \left[ \frac{1}{(x-3)^3} \frac{(2x-4)}{-3} - \frac{3(x^2-4x-1)}{(x-3)^4} \right] \quad (20)$$
$$= 9 \left[ \frac{2x^2-10x+12-3(x^2-4x-1)}{(x-3)^4} \right]$$
$$= -\frac{9(x+3)(x-5)}{(x-3)^4} \quad \text{for } x \neq 3 \quad (5)$$

25

Horizontal asymptotes : 
$$\lim_{x \to \pm \infty} f(x) = 0$$
  $\therefore y = 0.$  (5)

$$\lim_{x \to 3^{-}} f(x) = \infty \text{ and } \lim_{x \to 3^{+}} f(x) = -\infty.$$
  
Vertical asymptote :  $x = 3$ . **(5)**  
At the turning points  $f'(x) = 0$ .  $\Leftrightarrow x = -3 \text{ or } x = 5$ . **(5)**



:. There are two inflection points:

 $x = -\sqrt{33}$  and  $x = \sqrt{33}$  are the *x*- coordinates of the points of inflection.

20

(b)  
For 
$$0 < r < 30$$
;  
 $h = \sqrt{900 - r^2}$  (5)  
The volume *V* is given by  
 $V = \frac{1}{3}\pi (2r)^3 \times 2h - \frac{1}{3}\pi v^2 h$  (5)  
 $= \frac{7}{3}\pi r^2 h$   
 $= \frac{7}{3}\pi r^2 \sqrt{900 - r^2}$ . (5)  
Tor  $0 < r < 30$ ,  
 $\frac{dV}{dr} = \frac{7}{3}\pi \left[2r \sqrt{900 - r^2} + r^2 \frac{(-2r)}{2\sqrt{900 - r^2}}\right]$  (5)  
 $= \frac{7}{3}\pi \left[\frac{2r (900 - r^2) - r^3}{\sqrt{900 - r^2}}\right]$   
 $= 7\pi r \frac{(600 - r^2)}{\sqrt{900 - r^2}}$ . (5)  
 $\frac{dV}{dr} = 0 \iff r = 10\sqrt{6}$  ( $\because r > 0$ ) (5)  
For  $0 < r < 10\sqrt{6}$ ,  $\frac{dV}{dr} > 0$  and for  $r > 10\sqrt{6}$ ,  $\frac{dV}{dr} < 0$   
(5)  
 $\therefore V$  is maximum when  $r = 10\sqrt{6}$ . (5)

15. (a) Using the substitution 
$$x = 2\sin^2 \theta + 3$$
 for  $0 \le \theta \le \frac{\pi}{4}$ , evaluate  $\int_{3}^{4} \sqrt{\frac{x-3}{5-x}} dx$ .  
(b) Using partial fractions, find  $\int \frac{1}{(x-1)(x-2)} dx$ .  
Let  $f(t) = \int_{3}^{t} \frac{1}{(x-1)(x-2)} dx$  for  $t > 2$ .  
Deduce that  $f(t) = \ln(t-2) - \ln(t-1) + \ln 2$  for  $t > 2$ .  
Using integration by parts, find  $\int \ln(x-k) dx$ , where k is a real constant.  
Hence, find  $\int f(t) dt$ .  
(c) Using the formula  $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$ , where a and b are constants,  
show that  $\int_{-\pi}^{\pi} \frac{\cos^2 x}{1+e^x} dx = \int_{-\pi}^{\pi} \frac{e^x \cos^2 x}{1+e^x} dx$ .  
Hence, find the value of  $\int_{-\pi}^{\pi} \frac{\cos^2 x}{1+e^x} dx$ .

(a) For 
$$0 \le \theta \le \frac{\pi}{4_3}$$
:  
 $x = 2\sin^2 \theta + \frac{\pi}{3} \Rightarrow dx = 4\sin\theta\cos\theta \, d\theta$  (5)  
 $x = 3 \Leftrightarrow 2\sin^2 \theta = 0 \Leftrightarrow \theta = 0$  (5)  
 $x = 4 \Leftrightarrow 2\sin^2 \theta = 1 \Leftrightarrow \sin\theta = \frac{1}{\sqrt{2}} \Leftrightarrow \theta = \frac{\pi}{4}$  (5)  
Then  $\int_{3}^{4} \sqrt{\frac{x-3}{5-x}} \, dx = \int_{0}^{\frac{\pi}{4}} \sqrt{\frac{2\sin^2 \theta}{2-2\sin^2 \theta}} \cdot 4\sin\theta\cos\theta \, d\theta$  (5)  
 $= \int_{0}^{\frac{\pi}{4}} 4\sin^2 \theta \, d\theta$  (5)  
 $= 2 \left(\theta - \frac{1}{2}\sin 2\theta\right) \left|_{0}^{\frac{\pi}{4}}$  (5)  
 $= \frac{\pi}{2} - 1$  (5)

- 29 -

Comparing coefficients of powers of x:

$$\begin{aligned} x^{i} : & A + B = 0 \quad (5) \\ x^{0} : & -2A - B = 1 \quad (5) \\ A &= -1 \text{ and } B = 1 \quad (5) \\ \text{Then } \int \frac{1}{(x-1)(x-2)} \, dx &= \int \frac{-1}{(x-1)} \, dx + \int \frac{1}{(x-2)} \, dx \quad (10) \\ &= \ln|x-2| - \ln|x-1| + C, \text{ where } C \text{ is an arbitrary constant.} \\ &(5) \quad (5) \quad (5) \quad (40) \end{aligned}$$

$$f(t) = \int_{3}^{t} \frac{1}{(x-1)(x-2)} \, dx \\ &= (\ln|x-2| - \ln|x-1|) \Big|_{3}^{t} \quad (5) \\ &= \ln(t-2) - \ln(t-1) + \ln 2 \text{ for } t > 2, (5) \\ &(10) \\ \hline \int \ln(x-k) \, dx = x \ln(x-k) - \int \frac{x}{(x-k)} \, dx \quad (5) \\ &= x \ln(x-k) - \int 1 \, dx - \int \frac{k}{(x-k)} \, dx \quad (5) \\ &= x \ln(x-k) - x + k \ln(x-k) + C \quad (5) \\ &= (x-k) \ln(x-k) - x + C, \text{ where } C \text{ is an arbitrary constant.} \end{aligned}$$

(e) Using the formula 
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} (a + b - x) dx,$$
  
 $\int_{-\pi}^{\pi} \int \frac{\cos^{2} x}{1 + e^{x}} dx = \int_{-\pi}^{\pi} \int \frac{\cos^{2}(-x)}{1 + e^{x}} dx$  (5)  
 $= \int_{-\pi}^{\pi} \int \frac{e^{x} \cos^{2} x}{1 + e^{x}} dx$  (5)  
 $\frac{2}{-\pi} \int \frac{\cos^{2} x}{1 + e^{x}} dx = \int_{-\pi}^{\pi} \int \frac{\cos^{2} x}{1 + e^{x}} dx + \int_{-\pi}^{\pi} \int \frac{e^{x} \cos^{2} x}{1 + e^{x}} dx$  (5)  
 $= \int_{-\pi}^{\pi} \int \frac{(1 + e^{x}) \cos^{2} x}{(1 + e^{x})} dx$   
 $= \int_{-\pi}^{\pi} \int \cos^{2} x dx$  (5)  
 $= \frac{1}{2} \int_{-\pi}^{\pi} (1 + \cos 2x) dx$  (5)  
 $= \frac{1}{2} \left[ x + \frac{1}{2} \sin 2x \right]_{-\pi}^{\pi}$  (5)  
 $\therefore \int_{-\pi}^{\pi} \int \frac{\cos^{2} x}{1 + e^{x}} dx = \frac{\pi}{2}$  (5)

16. Write down the coordinates of the point of intersection A of the straight lines 12x-5y-7=0and y=1.

Let l be the bisector of the acute angle formed by these lines. Find the equation of the straight line l.

Let P be a point on l. Show that the coordinates of P can be written as  $(3\lambda + 1, 2\lambda + 1)$ , where  $\lambda \in \mathbb{R}$ .

Let  $B \equiv (6,0)$ . Show that the equation of the circle with the points B and P as ends of a diameter can be written as  $S + \lambda U = 0$ , where  $S \equiv x^2 + y^2 - 7x - y + 6$  and  $U \equiv -3x - 2y + 18$ .

Deduce that S=0 is the equation of the circle with AB as a diameter.

Show that U=0 is the equation of the straight line through B, perpendicular to l.

Find the coordinates of the fixed point which is distinct from B, and lying on the circles with the equation  $S + \lambda U = 0$  for all  $\lambda \in \mathbb{R}$ .

Find the value of  $\lambda$  such that the circle given by S=0 is orthogonal to the circle given by  $S+\lambda U=0$ .



Equations of the bisectors are given by

$$\frac{12x - 5y - 7}{13} = \pm \frac{(y - 1)}{1}$$

$$\Rightarrow 12x - 5y - 7 = 13 (y - 1) \text{ or } 12x - 5y - 7 = -13 (y - 1)$$

$$\Rightarrow 2x - 3y + 1 = 0 \text{ or } 3x + 2y - 5 = 0$$

$$5 + 5$$

The angle  $\theta$  between y = 1 and 2x - 3y + 1 = 0, is given by

$$\tan \theta = \left| \frac{\frac{2}{3} - 0}{1 + \frac{2}{3}(0)} \right| = \frac{2}{3} < 1 \quad (5)$$
  
$$\therefore \ l: \ 2x - 3y + 1 = 0. \quad (5)$$
  
$$30$$

Note that for a point (x, y) on l;



- 33 -

25



## $\therefore$ The coordinates of *C* is given by

$$u = -3x - 2y + 18 = 0$$
  
and  $l = 2x - 3y + 1 = 0$   
$$\Rightarrow x = 4 \text{ and } y = 3$$
  
$$\therefore C = (4, 3) .$$
 5

The circles ;

S = 0 and  $S + \lambda U = 0$  are orthogonal

$$\Rightarrow 2\left(-\frac{1}{2}(3\lambda+7)\right)\left(-\frac{7}{2}\right)+2\left(-\frac{1}{2}(2\lambda+1)\right)\left(-\frac{1}{2}\right) = 6+18\lambda+6$$

$$5 5 5 5$$

$$\Rightarrow 13\lambda = 26 5$$

$$\Rightarrow \lambda = 2.$$

$$20$$





C

and  $ABD = \pi - (\alpha + 2\beta)$ 

Using the sine Rule :

В

for the triangle *ABD*, we have

$$\frac{BD}{\sin BAD} = \frac{AD}{\sin ABD} \quad (10)$$

$$\Rightarrow \frac{BD}{\sin \alpha} = \frac{AD}{\sin (\pi - (\alpha + 2\beta))}$$
$$\Rightarrow \frac{BD}{\sin \alpha} = \frac{AD}{\sin (\alpha + 2\beta)}$$
(1)

β

for the triangle *BDC*, we have

$$\frac{CD}{\sin DBC} = \frac{BC}{\sin BDC} \quad (10)$$

$$\Rightarrow \frac{CD}{\sin \beta} = \frac{BC}{\sin 2\beta} \quad (2)$$

 $\therefore BD = DC$  and AD = BC, from (1) and (2), we get

$$\frac{\sin \alpha}{\sin \beta} = \frac{\sin (\alpha + 2\beta)}{\sin 2\beta} \qquad (5)$$

(*c*)

$$\Rightarrow 2 \sin \alpha \cos \beta = \sin (\alpha + 2\beta).$$
(5)
(40)
If  $\alpha : \beta = 3 : 2$ , then we have
$$2 \sin \alpha \cos \frac{2\alpha}{3} = \sin \frac{7\alpha}{3} \quad (5)$$

$$\Rightarrow 2 \sin 3 \left(\frac{\alpha}{3}\right) \cos 2 \left(\frac{\alpha}{3}\right) = \sin 7 \quad (\frac{\alpha}{3}) \quad (5)$$

$$\Rightarrow \frac{\alpha}{3} = \frac{\pi}{18}, \frac{5\pi}{18}, \frac{7\pi}{18}.$$

$$\Rightarrow \alpha = \frac{\pi}{6}, \frac{15\pi}{18}, \frac{21\pi}{18} \quad (5)$$

$$\therefore BC = AD < AC, \alpha \text{ must be an acute angle.}$$

$$\therefore \alpha = \frac{\pi}{6}. \quad (5)$$
20)
2  $\tan^{-1}x + \tan^{-1}(x+1) = \frac{\pi}{2}$ 
Let  $\alpha = \tan^{-1}(x)$  and  $\beta = \tan^{-1}(x+1)$ . Note that  $x \neq \pm 1$ .  
Then  $2\alpha + \beta = \frac{\pi}{2}. \quad (5)$ 

$$\Rightarrow 2\alpha = \frac{\pi}{2} - \beta$$

$$\Rightarrow \tan 2\alpha = \tan\left(\frac{\pi}{2} - \beta\right) \quad (5)$$

$$\Rightarrow \frac{2\tan \alpha}{1 - \tan^{2}\alpha} = \cot \beta \quad (5) + (5)$$

$$\Rightarrow 2x = 1 - x \quad (\because x \neq \pm 1)$$

$$\Rightarrow x = \frac{1}{3}. \quad (5)$$
25

Note that

$$2 \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{4}{3}\right) = \frac{\pi}{2}.$$

$$\Rightarrow \frac{\pi}{4} - \frac{1}{2} \tan^{-1}\left(\frac{4}{3}\right) = \tan^{-1}\left(\frac{1}{3}\right)$$

$$\Rightarrow \cos\left(\left(\frac{\pi}{4}\right) - \frac{1}{2} \tan^{-1}\left(\frac{4}{3}\right)\right) = \cos\left(\tan^{-1}\left(\frac{1}{3}\right)\right)$$

$$(5)$$

$$(10)$$

$$3$$

$$(10)$$

$$(5)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$