7048

AL/2020/02/E-I(NEW)

යියලු ම හිමිකම් ආව්රීණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]	
(தை திக்கேக் /புதிய பாடத்திட்டம்/New Syllabu	S
கேல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பர கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பர கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பர கெல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பர செல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பர செல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பர	றைக, 2020 ட்சை, 2020
ப்பைக்கை திஜ்கை I இரசாயனவியல் I Chemistry I	பேடே <i>சேவே</i> இரண்டு மணித்தியாலம் Two hours
Instructions:	
* Periodic Table is provided.	
* This paper consists of 09 pages.	
 * Answer all the questions. * Use of calculators is not allowed. 	
* Write your Index Number in the space provided in the answer sheet.	
* Follow the instructions given on the back of the answer sheet carefully * In each of the questions 1 to 50 pick one of the alternatives from (1) (2)	
* In each of the questions 1 to 50, pick one of the alternatives from (1), (2 or most appropriate and mark your response on the answer sheet with	
with the instructions given on the back of the answer sheet.	
	stant $h = 6.626 \times 10^{-34} \text{ J s}$ ight $c = 3 \times 10^8 \text{ m s}^{-1}$
 Consider the following discoveries made with regard to the atomic I. Positive rays inside a cathode ray tube II. Radioactivity by certain types of nuclei The two scientists who discovered the above stated I and II resperent (1) J. J. Thomson and Henry Becquerel (2) Eugen Goldstein and Robert Millikan (3) Henry Becquerel and Eugen Goldstein (4) J. J. Thomson and Ernest Rutherford (5) Eugen Goldstein and Henry Becquerel The number of electrons in the manganese atom (Mn, Z = 25) that l = 0 and m_l = -1 respectively are, (1) 6 and 4 (2) 8 and 12 (3) 8 and 5 (4) 8 ar M is an element that belongs to the second period in the Periodic cule MCl₃ which has a dipole moment. The group of the Periodic (1) 2 (2) 13 (3) 14 (4) 15 The number of unstable Lewis dot-dash structures that can be d intervent (1) 1 (2) 2 (3) 3 (4) 4 	at have quantum numbers at have quantum numbers and 6 (5) 10 and 5 Table. It forms a covalent mol- Table to which M belongs is, (5) 16
	(3) 3
5. The IUPAC name of the given compound is, (1) 1-bromo-4-methyl-5-hydroxypent-1-en-3-one (2) 5-bromo-1-hydroxy-2-methylpent-4-en-3-one (3) 1-bromo-5-hydroxy-4-methylpent-1-en-3-one (4) 5-bromo-2-methyl-3-oxopent-4-en-1-ol (5) 1-bromo-4-methyl-3-oxopent-1-enol	CH ₃ CH—C—CH=CH—Br II O

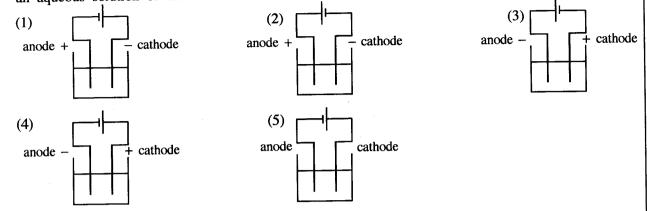
AL/2020/02/E-I(NEW)

6. The decreasing order of radii of the species O, O^{2-} , F, F⁻, S²⁻, Cl⁻ is, (1) $S^{2-} > Cl^{-} > O^{2-} > F^{-} > O > F$ (2) $S^{2-} > Cl^- > O^{2-} > F^- > F > O$ (3) $Cl^- > S^{2-} > O^{2-} > F^- > O > F$ (4) $Cl^- > S^{2-} > F^- > O^{2-} > O > F$ (5) $S^{2^-} > Cl^- > O^{2^-} > O > F^- >$ 7. A rigid-closed container contains n_1 moles of an ideal gas at temperature $T_1(K)$ and pressure $P_1(Pa)$. When an additional amount of the gas was inserted into the container, the new temperature and pressure were T_2 and P_2 , respectively. The total number of moles of the gas now in the container is, (2) $\frac{n_1^T P_2}{T_2 P_1}$ (3) $\frac{T_2 P_2}{n_1 T_1 P_1}$ (4) $\frac{n_1^T P_2}{T_2 P_1}$ (5) $\frac{n_1 T_2 P_1}{T_1 P_2}$ (1) $\frac{n_1 T P}{T_2 P_2}$ 8. The total number of electrons exchanged in the reaction of the oxidation of ethanol (C₂H₅OH) (CH₃COOH) using acidic K₂Cr₂O₇ solution is, to acetic acid (2) 8 (4) 12 (5) 14 (3) 10 (1) 69. Which compound of the following, can undergo aldol condensation, when reacted with aqueous NaOH? (1) CH_3C-OH (2) CH_3C-OCH_3 (3) $H-C-OCH_3$ (4) CH_3CH_2C-H (5) $(CH_3)_3CC-H$ 10. AX(s), A₂Y(s) and AZ(s) are sparingly soluble salts in water having K_{sp} values of 1.6×10^{-9} , 3.2×10^{-11} and 9.0×10^{-12} , respectively at 25 °C. Which of the following shows the order of the three saturated solutions of these salts in decreasing concentration of cation A+(aq) , at 25 °C ? (1) $AX(s) > A_2Y(s) > AZ(s)$ (2) $A_2Y(s) > AX(s) > AZ(s)$ More Past Papers at (3) $AX(s) > AZ(s) > A_2Y(s)$ (4) $A_{\gamma}Y(s) > AZ(s) > AX(s)$ tamilguru.lk (5) $AZ(s) > A_2Y(s) > AX(s)$ 11. Consider the following compounds. ÇH, CH₃¢CH₂CH₃ CH₃CH₂CH₂CH₂CHO CH₃¢CHO СН,СН,СН,СН,ОН СН,СН,СН,СН,СН,СН, ĊH, ĊH, E С D B A Relative 86 88 86 86 86 molecular mass Variation of boiling points of these compounds is best shown by, B.P B.P B.P B.P RF ABCDE ABCDE ABCDE ABCDE ABCDE (5) (4)(3)(1)(2)

[See page three

(5) + 202

(3) C and 50.4%


(5) 3.75×10^{-2}

(1) KF < NaCl < KCl < Na₂S (2) KCl < NaCl < KF $< Na_2S$ (3) KF < KCl < NaCl < Na₂S (4) $Na_{2}S < NaCl < KCl < KF$ (5) KF < Na₂S < NaCl < KCl 13. Standard combustion enthalpies of $H_2(g)$, C(s) and CH₂OH(l) at 298 K are -286 kJ mol⁻¹, -393 kJ mol⁻¹ and -726 kJ mol⁻¹, respectively. Enthalpy of vaporization of CH₃OH(*l*) is +37 kJ mol⁻¹. Enthalpy of formation (kJ mol⁻¹) of one mole of gaseous CH₃OH at 298 K is, (1) -276(2) -239(3) -202 (4) +84 14. Phosphorous can be prepared in an electric furnace as given by the following balanced chemical equation. $2 \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2} + 6 \operatorname{SiO}_{2} + 10 \operatorname{C} \rightarrow 6 \operatorname{CaSiO}_{3} + 10 \operatorname{CO} + \operatorname{P}_{4}$ When 620 g of Ca₃(PO₄)₂, 180 g of SiO₂ and 96 g of C were reacted, 50 g of P₄ were obtained. Under these conditions, the limiting reagent (reagent that is completely consumed) and percentage yield of P₄ respectively are, (C = 12, O = 16, Si = 28, P = 31, Ca = 40)(1) $Ca_3(PO_4)_2$ and 80.7% (2) SiO₂ and 80.7% (4) SiO, and 40.3% (5) C and 25.2% 15. Consider the following two equilibria occurring in two separate rigid-closed containers under the same conditions. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) ; K_{P_1} = 3.0 \times 10^{-4}$ $NH_3(g) + H_2S(g) \rightleftharpoons NH_4HS(g); K_{P_2} = 8.0 \times 10^{-4}$ Under these conditions K_p for the equilibrium $2H_2S(g) + N_2(g) + 3H_2(g) \rightleftharpoons 2NH_4HS(g)$ is, (3) 1.92×10^{-8} (4) 3.40×10^{-6} (1) 5.76×10^{-12} (2) 7.2×10^{-10} 16. Consider the nitration reaction of bromobenzene. Resonance stabilized carbocation intermediates are formed during this reaction. Which of the following is not a resonance structure of these intermediates? (1) $\stackrel{H}{\longrightarrow} \stackrel{H}{NO_2}$ (2) $\stackrel{Br}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{Br}{NO_2}$ (3) $\stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{NO_2}{\longrightarrow} \stackrel{(4)}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{NO_2}{\longrightarrow} \stackrel{(5)}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\rightarrow} \stackrel{$ 17. A reaction which is non-spontaneous at room temperature and 1 atm pressure becomes spontaneous at high temperature at the same pressure. Which of the following is correct for this reaction at room temperature? (Assume that ΔH and ΔS do not change with temperature and pressure.) ΔG ΔH ΔS (1) Positive Positive Positive (2) Positive Negative Negative (3) Positive Negative Positive

- (4) Negative Positive Negative
- (5) Negative Negative Negative
- 18. The de Broglie wavelength of a neutron travelling with a velocity v is λ . If the kinetic energy $E (E = \frac{1}{2}mv^2)$ of this neutron is increased four times, the new de Broglie wavelength would be, (1) $\frac{\lambda}{2}$ (2) $\underline{\lambda}$ (3) 2λ (4) 4λ (5) 16λ

12. The increasing order of covalent character of the chemical species NaCl, Na₂S, KF and KCl is,

19. Which of the following correctly shows the electrolytic cell constructed for the electrolysis of an aqueous solution of the salt MX?

- 20. Which of the following statements is correct regarding the reaction between a carboxylic acid and an alcohol to give an ester?
 - (1) The overall reaction is a nucleophilic addition reaction of a carbonyl compound.
 - (2) It is a reaction in which the alcohol acts as a nucleophile.
 - (3) It is a reaction which occurs with the cleavage of the O-H bond of the carboxylic acid.
 - (4) It is a reaction which occurs with the cleavage of the C-O bond of the alcohol.
 - (5) It is an acid-base reaction.
- 21. Decomposition of 1 mol of $CH_3OH(l)$ occurs at high temperatures as follows.

$$CH_2OH(l) \rightarrow CO(g) + 2H_2(g); \Delta H = +128 k.$$

- Which of the following is **incorrect** for the above reaction? (H=1, C=12, O=16)
- (1) The heat absorbed when 1 mol of $CH_3OH(g)$ is decomposed is less than 128 kJ.
- (2) Enthalpy of CO(g) + $2H_2(g)$ is higher than the enthalpy of CH₃OH(*l*).
- (3) 128 kJ of heat is released when 1 mol of CO(g) is formed.
- (4) 128 kJ of heat is absorbed during the decomposition of a mole of reactant.
- (5) 128 kJ of heat is absorbed when 32 g of products are formed.
- 22. Identify the incorrect statement from the following.
 - (1) Electron gain energy of nitrogen [N(g)] is positive.
 - (2) Dilution of $BiCl_3(aq)$ solution with water gives a white precipitate.
 - (3) H_2S gas can act both as an oxidizing agent and a reducing agent.
 - (4) The effective nuclear charge (Z^*) felt by a valence electron in He is less than 2.
 - (5) Aluminium is inert towards N_2 gas even when heated to a high temperature.
- 23. The concentration of a dilute aqueous solution of a weak acid HA is C mol dm⁻³ and its acid dissociation constant is K_a at 298 K. Which of the following expressions gives the pH of the solution at 298 K?

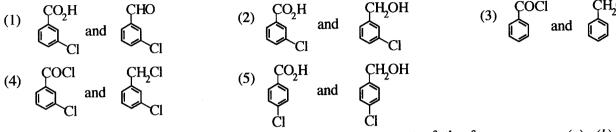
(1) $pH = \frac{1}{2}pK_a - \frac{1}{2}\log C$

- (2) $pH = -\frac{1}{2}pK_a \frac{1}{2}\log C$
- (3) $pH = -\frac{1}{2}pK_a + \frac{1}{2}\log C$
- (4) $pH = -\frac{1}{2}pK_a \frac{1}{2}\log(1/C)$

(5)
$$pH = \frac{1}{2}pK_a - \frac{1}{2}\log(1/C)$$

More Past Papers at tamilguru.lk

Ţ


24.	tempe product has 22 A bot 1.0 mo	rature and ce 20 litres 2.4 litres v ttle labelle ol dm ⁻³ KN	pressure (s of O_2 gas colume at S ed X conta MnO_4 in th	STP). For at STP (2 STP.) ains H ₂ O ₂ e presence	example, a li $H_2O_2(aq) \rightarrow$ solution. Wh	tre of 2 2 $H_2O(h$ en 25.0 SO_4 the	20 volume $(t) + O_2(g)).$ $(t) \text{ cm}^3 \text{ of so}$	strength H (Assume t	duced at standa H_2O_2 solution we that 1 mole of g was titrated we each the end po	vill gas ith
	(1) 15		(2) 20		(3) 25		(4) 28	(:	5) 30	
25.	OH (a	iq) ions a	a sparingly at 298 K.) × 10 ^{–36} a	The solub	luble salt fo ility (mol di	ormed b m ⁻³) of	y the read M(OH) ₂ (s	ction betw) in wate	veen M ²⁺ (aq) a r at pH = 5	nd is,
	(1) 🗸	2×10^{-18}	(2) 2	$\times 10^{-18}$	(3) 1 × 10	-18	(4) ∛2 ×	10^{-12} (3)	5) 1×10^{-12}	
26.	hydrog (1) M (2) Pt (3) M (4) M	gen electro $Ig(s) Mg^{2}$ $I(s) H_2(g)$ $Ig(s), Mg^{2+}$ $Ig(s) Mg^{2}$	ode, a stan ⁺ (aq, 1.00 r H ⁺ (aq, 1.0 ⁻ (aq, 1.00 r ⁺ (aq, 1.00 r	dard Mg-e nol dm ⁻³) $\ $ 0 mol dm ⁻³ nol dm ⁻³) $\ $ nol dm ⁻³), H	tes the standa lectrode and H ⁺ (aq, 1.00 n) $\parallel Mg^{2+}$ (aq, 1 H ⁺ (aq, 1.00 m H ⁺ (aq, 1.00 m) $\parallel Mg^{2+}$ (aq, 1	a salt-bi nol dm ⁻³ 1.00 mol ol dm ⁻³) ol dm ⁻³),	ridge at 29) $ H_2(g) Pt(2) H_2(g) Pt(2) H_2(g) Mg H_2(g) Pt(2) H_2(g) Pt(2) H_2(g) Pt(2) P$	8 K? (s) (s) 5)	y using a standa	ard
27.	monol solutio were draine remain	basic organ on of acid allowed to d out. 10. ning in th the acid	hic acid bet l were mix o separate. 00 cm ³ of e aqueous	ween dichlo aed vigorou Thereafter, 0.02 mol c layer. (Ass ichloromet	oromethane an Isly with 10.0 the dichloro Im ⁻³ NaOH(ac	d water 20 cm ³ (methane q) soluti acid do ter at 2	50.00 cm ³ of dichloro layer in t on were re pes not din	of a 0.20 methane au the bottom equired to nerize in the	coefficient K_D of mol dm ⁻³ aqueo nd the two lay of the flask w neutralize the ac he organic phas	ous ers vas cid
28.	given consu	temperatu mption of (g), forma rate	re. After a C ₂ H ₄ (g) wa	certain times x mol dress x mol dress x^{2} (g) and for s^{-1}	$CO_2(g) + 2H$ ne, it was fou	nd that of the f	the rate of ollowing sh	the reaction the reaction the reaction the reaction the reaction of the reacti	sed container at on with respect tes of consumpti nat time?	to
	(1)	$\frac{3}{x}$	$\frac{2}{x}$	$\frac{2}{x}$						
			x					Past Pa	•	
	(3)	$\frac{x}{3}$	$\frac{x}{2}$	$\frac{x}{2}$			tan	nilgu	ı ru.l k	
	(4)	$\frac{1}{x}$	$\frac{\frac{x}{2}}{\frac{1}{x}}$	$\frac{1}{x}$						
	(5)	3 <i>x</i>	2x	2x						
29.	The r	ate of rea	$\mathbf{M}(\mathbf{g}) + \mathbf{Q}$	$\mathbf{Q}(\mathbf{g}) \rightarrow \mathbf{R}(\mathbf{g})$ ed when the	he concentrati	on of N	A was dou	bled. The	rature T . rate of reaction and 2.0 mol dr	

respectively. The rate constant of the reaction under these conditions is,

(1) $2.5 \times 10^{-4} \,\mathrm{s}^{-1}$ (2) $12.5 \,\mathrm{s}^{-1}$ (3) $25 \,\mathrm{s}^{-1}$ (4) $50 \,\mathrm{s}^{-1}$ (5) $500 \,\mathrm{s}^{-1}$

30. Consider the following reaction scheme.

P and Q respectively could be,

For each of the questions 31 to 40, one or more responses out of the four responses (a), (b), (c) and (d) given is/are correct. Select the correct response/responses. In accordance with the instructions given on your answer sheet, mark

- (1) if only (a) and (b) are correct.
- (2) if only (b) and (c) are correct.
- (3) if only (c) and (d) are correct.
- (4) if only (d) and (a) are correct.
- (5) if any other number or combination of responses is correct.

Summary of above Instructions

(1)	(2)	(3)	(4)	(5)
Only (a) and (b)	Only (b) and (c)	Only (c) and (d)	Only (d) and (a)	Any other number or combination of responses
are correct	are correct	are correct	are correct	is correct

31. Which of the following statement/s is/are correct with regard to 3*d*-block elements and their compounds?

- (a) Among the 3d-block elements, Sc is not considered as a transition element.
- (b) The radii of atoms (Sc to Cu) decrease from left to right.
- (c) $[Ni(NH_3)_6]^{2+}$ is blue in colour whereas $[Zn(NH_3)_4]^{2+}$ is colourless.

(d) The IUPAC name of $K_2 \text{NiCl}_4$ is dipotassium tetrachloronickelate(II).

32. Which statement/s is/are correct regarding the following molecule?

$$H - C_{P} - O_{Q} - C_{R} = C_{S} - C_{T} = O_{U}$$

$$H - C_{P} - O_{Q} - C_{R} = C_{S} - C_{T} = O_{U}$$

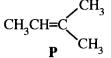
(a) Atoms labelled P, Q, R and S lie on a straight line.

(b) Atoms labelled Q, R, S and T lie on a straight line.

- (c) Atoms labelled R, S, T, U and V lie on the same plane.
- (d) Atoms labelled R, S, T and U lie on a straight line.

33. 0.01 moles of $N_2(g)$, 0.10 moles of $H_2(g)$ and 0.40 moles of $NH_3(g)$ were inserted into a 1.0 dm³ rigid-closed container and allowed to reach equilibrium at 500 K as given below.

$$N_{2}(g) + 3H_{2}(g) \rightleftharpoons 2NH_{3}(g)$$
 $K_{C} = 2.0 \times 10^{2} \text{ mol}^{-2} \text{ dm}^{6}$


Which of the following statement/s is/are correct for the changes in the system from the initial stage to equilibrium? Q_c is the reaction quotient.

- (a) Initially $Q_c > K_c$; NH₃(g) starts to produce N₂(g) and H₂(g) and the system reaches equilibrium.
- (b) Initially $Q_C < K_C$; NH₃(g) starts to produce N₂(g) and H₂(g) and the system reaches equilibrium.

(c) Initially $Q_C < K_C$; N₂(g) and H₂(g) react to form NH₃(g) and the system reaches equilibrium.

(d) Initially $Q_C > K_C$; N₂(g) and H₂(g) react to form NH₃(g) and the system reaches equilibrium.

34. Which of the following statement/s regarding the reaction between compound \mathbf{P} and HCl to form an alkyl halide is/are correct?

- (a) The major product is 2-chloro-2-methylbutane.
- (b) A secondary carbocation is formed as an intermediate in this reaction.
- (c) In one of the steps of the reaction, the HCl bond is cleaved to give a chlorine radical (Cl[•]).
- (d) In one of the steps of the reaction, a nucleophile reacts with a carbocation.
- **35.** A binary liquid mixture prepared by mixing two liquids in a closed evacuated container at a given temperature shows a negative deviation from Roult's Law. Which of the following statement/s is/are correct for this system?
 - (a) Total vapour pressure of the mixture is less than the expected total vapour pressure should it behave as an ideal mixture.
 - (b) Heat is released when the mixture is formed.
 - (c) Number of molecules in the vapour phase of the mixture is greater than the expected number of molecules should it behave as an ideal mixture.
 - (d) Heat is absorbed when the mixture is formed.
- 36. Which of the following statement/s is/are correct with regard to CFC, HCFC and HFC?
 - (a) Both classes of compounds CFC and HCFC have the ability to produce chlorine free radicals in the upper atmosphere (stratosphere).
 - (b) Both classes of compounds HFC and HCFC have the ability to produce chlorine free radicals in the upper atmosphere (stratosphere).
 - (c) All three classes of compounds CFC, HCFC and HFC are strong greenhouse gases.
 - (d) All three classes of compounds CFC, HCFC and HFC contribute significantly to ozone layer depletion.
- **37.** Which of the following statement/s is/are correct with regard to halogens, noble gases and their compounds?
 - (a) Hypochlorous ion disproportionates rapidly in acidic solutions.
 - (b) Xe forms a series of compounds with F_2 gas, among which XeF_4 has a square planar geometry.
 - (c) Among the hydrogen halides, HF has the highest bond dissociation energy per mole.
 - (d) Boiling points of halogens increase down the group as a result of increasing strength of London forces.
- **38.** Which of the following statement/s is/are correct regarding the Daniell cell when it operates at room temperature? ($E_{cell}^{\circ} = +1.10 \text{ V}$)
 - (a) Net electron flow occurs from Zn to Cu.
 - (b) The equilibrium $Zn^{2+}(aq) + 2e \rightleftharpoons Zn(s)$ shifts to the right.
 - (c) A liquid-junction potential is created due to the presence of a salt-bridge.
 - (d) The equilibrium $Cu^{2+}(aq) + 2e \rightleftharpoons Cu(s)$ shifts to the right.
- 39. Which of the following statement/s is/are correct for ideal gases and real gases at constant temperature?
 - (a) At very high pressures, the volume of a real gas is higher than that of an ideal gas.
 - (b) At high pressures, real gases tend to behave as ideal gases.
 - (c) At very high pressures, the volume of a real gas is lower than that of an ideal gas.
 - (d) At low pressures, real gases tend to behave as ideal gases.
- 40. Which of the following statement/s is/are correct regarding some industrial processes?
 - (a) The first two steps involved in the manufacture of Na_2CO_3 by Solvay Process are endothermic.
 - (b) The presence of Mg^{2+} , Ca^{2+} and SO_4^{2-} ions in brine, hinders the production of NaOH using the membrane cell method.
 - (c) The first step involved in the manufacture of nitric acid by Ostwald method is the oxidation of NH_3 gas using O_2 in air in the presence of a catalyst to give NO_2 gas.
 - (d) High temperature and low pressure conditions are employed in the manufacture of NH₃ gas using Haber-Bosh process.

• In question Nos. 41 to 50, two statements are given in respect of each question. From the Table given below, select the response, out of the responses (1), (2), (3), (4) and (5), that best fits the two statements and mark appropriately on your answer sheet.

Response	First Statement	Second Statement
(1)	True	True, and correctly explains the first statement
(2)	True	True, but does not explain the first statement correctly
(3)	True	False
(4)	False	Тгие
(5)	False	False

Г	First Statement	Second statement
41.	Among the oxides of Cr and Mn, CrO and MnO are acidic, while CrO_3 and Mn_2O_7 are basic.	The acidic/basic nature of the oxides of Cr and Mn is dependant on the oxidation number of the metal.
42.	An acidic buffer solution can be prepared by mixing a weak acid HA(aq) with its sodium salt NaA(aq).	When $OH^{-}(aq)$ or $H^{+}(aq)$ ions are added to a buffer solution, the added amounts of $OH^{-}(aq)$ or $H^{+}(aq)$ ions are removed through the reactions; $OH^{-}(aq) + HA(aq) \rightarrow A^{-}(aq) + H_2O(l)$ and $H^{+}(aq) + A^{-}(aq) \rightarrow HA(aq)$ respectively.
43 .	steam distillation at a temperature below 100 °C.	At the temperature at which a mixture of essential oil and water boils, the total vapour pressure of the system is less than the atmospheric pressure.
44 _.	volumes of two different ideal gases are different from each other.	
	diastereoisomerism.	Any two isomers which are not mirror images of each other are diastereoisomers.
	Hydrogenation of benzene is more difficult than hydrogenation of alkenes.	the loss of aromatic stabilization.
47.	and water in the production of sulphuric acid is endothermic.	
48 .	gives a mixture of primary, secondary and tertiary amines and a quaternary ammonium salt.	
49 .	respect to the reactant P, the graph of rate against concentration of P gives a straight line passing through the origin.	
50	On a sunny day, strong photochemical smog car be seen in a city with heavy traffic congestion	 Photochemical smog is caused entirely by scattering of solar radiation by small particles and water droplets that are emitted by vehicle exhaust systems.
	*:	* *

89

Ac

90

Th

91

Pa

92

U

93

Np

94

Pu

95

96

Am Cm

97

Bk

98

Cf

99

Es

100

Fm

101

Md

102 103

No Lr

- 9 -

The Periodic Table

		-																
	1																	2
1	H												·•					He
	3	4]										5		-	To		<u> </u>
2	Li	Be												6	7	8	9	10
-			1										B	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	Р	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	К	Ca	Sc	Ti	v	Cr	Mn	1	Co	Ni	Cu							1 1
	37			<u>+</u>	+			+				Zn	Ga	Ge	As	Se	Br	Kr
_		38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	<u>Y</u>	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb]			
	87	88	Ac-	104	105	106	107	108	1		·				Bi	Po	At	Rn
7	1								109	110	111	112	113	114	115	116	117	118
1	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
			-														•	
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb							
		ŀ		00			A 111	Jill	15u	Gu	ID	Dy	Но	Er	Tm	Yb	Lu	

More Past Papers at tamilguru.lk

AL/2020/02-E-II(A)(NEW)

7048

තිර	ඊලු ම හිමිස	හම් ඇව්රිණි/முழுப் ப		All Rights Reserved) 5/புதிய பாடத்திட		yllabu
961 1961		ரடலாத திணைக்களய்	இலங்கைப் படன்சத			லை ஒரூர்கல்கிக்கும் இரும் குறை குறைக்களம் இணக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் R, Sri Lanka Department of Examinations, Sri Lanka வரு ஒரூர்கல்கிக்கு இருவர்கைப் பரீட்சைத் திணைக்களம் காகுக காகுக்கு 2020
		கல்விட்	ப பொதுத் தராத	ரப் பத்திர (உயர் lucation (Adv. Lev	தர)ப் பரீப்	_சை, 2020
		ත විදහාව II പങ്ങഖിயல் II istry II		02EII		
	ஜு ஆ மூன்று Three	மணித்தியாலய	·		மேலதிக	යවීම කාලය - මිනිත්තු 10 යි வாசிப்பு நேரம் - 10 நிமிடங்கள் I Reading Time - 10 minutes
	Use add that you	itional reading t igive priority in an	me to go through swering.	the question paper,	select the q	uestions and decide on the questions
		lic Table is provi alculators is not	ded on page 15. allowed.		Index No.	:
* L	Iniversal	l gas constant, R	$k = 8.314 \text{ J K}^{-1} \text{ r}$	mol ⁻¹		
			$6.022 \times 10^{23} \text{ mm}$			
* I	n answe	ering this paper,	you may repres	sent alkyl groups	in a conde	ensed manner.
	PART	н Г А — Structur	i i I H ed Essay (pag		CH ₃ CH ₂ —	
* N	Vrite you	ır answer in the	on the question p space provided fo extensive answers	paper itself. Fr each question. F are not expected.	lease note	that the space provided is sufficient
	PART	B and PART	C — Essay (p	oages 09 - 14)		
* A th	t the en hat Part	nd of the time al A is on top and	lotted for this pa d hand them over	per, tie the answei r to the Supervisoi	s to the th	papers supplied for this purpose. ree Parts A, B and C together so
				Examiner's Use O		
[Part	Question No.	Marks		Total	
		1				
	A	2		In Numbers		
		3		In Letters		
ŀ		4				
	В	5			Code	Numbers
		6 7		Marking Ex	aminer 1	
ŀ		8		Marking Ex	aminer 2	
	С	9		Checked by	•	
		10			•	
		Total		Supervised b	y:	

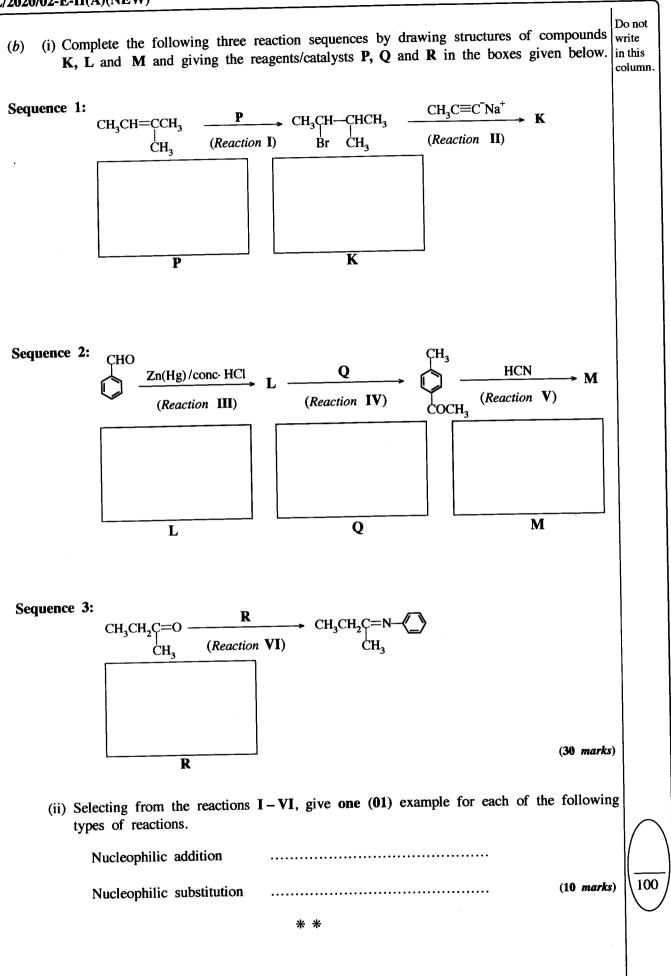
	1					
AL/2020/0	-E-II(A)(NEW)	- 2 -	•			_
	PART A – STRU				Do not	Ł
	Answer all four questions on this paper i	tself. (Each	question carries	100 marks.)) write	
1. (a) W_1	te the answers to the questions given b	elow on the	dotted lines.		in this column	
) Of the three ions Na ⁺ , Mg ²⁺ and F ⁻ , wh radius?			iic 		
(i) Of the three elements C,N and O, which ionization energy?	ch one has th	he highest secon			
(ii) Of the three compounds H ₂ O, HOCl and electronegative oxygen atom?	d OF ₂ , which	one has the mo	ost 		
(ir) Of the three elements Be, C and N, which an electron is added to its atom [Y(g) + c gaseous state?	h one will lib e → Y (g); Y	erate energy wh = Be, C, N] in t	en he 		
() Of the three ionic compounds NaF, I the highest solubility in water?	KF and KB	r, which one h	nas 		
()) Of the three compounds HCHO, CH ₃ F strongest intermolecular forces?	and H_2O_2 ,	which one has t	the	(24 marks)	
(b)) Draw the most acceptable Lewis dot-d given below.	lash structure	e for the ion, N	N ₂ O ₃ ²⁻ . Its	skeleton is	
	O I O-N-N-O					
(i) Draw three more Lewis dot-dash structure relative stabilities of the structures drawn structure drawn in (i) above, by writing	n by you, wh	en compared w	1th the mos	t acceptable	
(i	i) Complete the given table based on the given below. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Lewis dot-d	0			
	;ö; [⊖] I :ĊI—N=N—Ö—C≡N:	C	$1 - N^{1} - N^{2} - N^{2}$	O ³ —C ⁴ —	N	
	••• •	N ¹	N ²	O ³	C ⁴	
	VSEPR pairs around the atom					
	electron pair geometry around the atom					
	shape around the atom					
1						

hybridization of the atom

AL/2020/02-E-II(A)(NEW)	7048 3- Index No. :	·····
• Parts (iv) to (vii) are of atoms is as in parts	based on the Lewis dot-da t (iii).	sh structure given in part (iii) abo	ove. Labelling Do not write in this column.
(iv) Identify the at	omic/hybrid orbitals involv	ed in the formation of σ bonds bet	
atoms given b I. Cl—N ¹		N ¹	
II. N ¹ —O		0	
III. $N^1 - N^2$	N ¹		
IV. $N^2 - O^3$	N ²		
V. $O^{3}-C^{4}$. C ⁴	
VI. C ⁴ —N		. N	
(v) Identify the ato below.		formation of π bonds between the two	o atoms given
I. $N^1 - N^2$	N ¹	. N ²	
		. N	
		. N	
(vi) State the appr	oximate bond angles arour	d N^1 , N^2 , O^3 and C^4 atoms.	
 (vii) Arrange the a (c) Consider the follow I. The atom 	toms N ¹ , N ² , O ³ and C ⁴ is $\cdots < \cdots < \cdots < \cdots$ ving information. as A and B combine to	form a heterodiatomic molecule	egativity. (56 <i>marks</i>)
	I. This is represented as A ronegativity of A is less t		
X = elec	tronegativity of the atom		
III. The inter is given	-nuclear distance between by the following equation.	A and B atoms (d_{A-B}) of the A	B molecule
	$r_A + r_B - c(X_B - X_A)$ nic radius, c = 9 pm		
		pometres (pm). (1 pm = 10^{-12} m)	
	e information, answer the		
		pe of σ bond between A and B '	?
(ii) Show how frac	tional charges (δ+ and δ-) are located in the molecule AB	
(iii) Write the equa direction.	tion to calculate the dipole	moment (μ) of molecule AB and	nd show its

2.

1. s. c. s


•

	distan distan	the of $H_2(d_{H-H})$ ince of $F_2(d_{F-F})$	= 74 pm = 144 pm = 2.1	Electronegativity of F Dipole moment of HF Charge of an electron	$= 6.0 \times 10^{-30}$	
Inter-nuclear	distan	nce of $F_2(d_{F-F})$	= 144 pm	Dipole moment of HF	$= 6.0 \times 10^{-30}$	I
			_			
Electronegati	vity o	f H	= 2.1	Charge of an election	$= 1.6 \times 10^{-1}$	
				C	_ 110 / 10	
·						
						Ì
						Ì
						ll.
A, B, C and D						marks)
than 20. A desc amount of water	rintia	n of the produc	$\frac{(\mathbf{P}_1 - \mathbf{P}_9)}{\text{re reacted v}}$. These elements have at formed when A is react with excess water are given	omic numbe ted with a	marks)
than 20 A desc	ription r and	n of the produc B, C and D a	$\frac{(\mathbf{P}_1 - \mathbf{P}_9)}{\mathbf{Description}}$	vith excess water are given of products	omic numbe ted with a	marks)
than 20. A desc amount of water Compound	ription \mathbf{r} and \mathbf{P}_1	n of the produc B, C and D a a compound with	$\frac{\text{Cts} (\mathbf{P}_1 - \mathbf{P}_9)}{\text{re reacted v}}$ $\frac{\text{Description}}{\text{h a covalent reacted v}}$	vith excess water are giv	omic numbe ted with a	marks)
than 20. A desc amount of water	$\begin{array}{c} \text{ription} \\ \text{r and} \\ \hline \\ P_1 \\ P_2 \\ \end{array}$	n of the produc B, C and D at a compound with a strong monob	$\frac{cts}{P_1 - P_9}$ re reacted v $\frac{Descriptic}{Descriptic}$ h a covalent r basic acid	vith excess water are given of products network structure	omic numbe ted with a	marks)
than 20. A desc amount of water Compound A	$\begin{array}{c} \text{ription} \\ \text{r and} \\ \hline \\ P_1 \\ P_2 \\ \hline \\ P_3 \\ \hline \end{array}$	n of the produc B, C and D a a compound with a strong monob a gas that turns	re reacted v Description h a covalent r pasic acid red litmus blue	vith excess water are given of products network structure	omic numbe ted with a	marks)
than 20. A desc amount of water Compound	$\begin{array}{c} \text{ription} \\ \text{r and} \\ \hline \\ P_1 \\ P_2 \\ \hline \\ P_3 \\ \hline \end{array}$	n of the produc B, C and D at a compound with a strong monob	re reacted v Description h a covalent r pasic acid red litmus blue	vith excess water are given of products network structure	omic numbe ted with a	marks)
than 20. A desc amount of water Compound A B	$\begin{array}{c} \text{P}_1\\ \text{P}_2\\ \text{P}_3\\ \text{P}_4\\ \end{array}$	n of the produc B, C and D a a compound with a strong monob a gas that turns	re reacted v Description h a covalent r pasic acid red litmus blue	vith excess water are given of products network structure	omic numbe ted with a	marks)
than 20. A desc amount of water Compound A	$\begin{array}{c} \text{Pription} \\ Priptio$	n of the produce B, C and D are a compound with a strong monob a gas that turns a compound with	cts $(\mathbf{P}_1 - \mathbf{P}_9)$ re reacted v Description h a covalent repart acid red litmus blue h bleaching p	vith excess water are given of products network structure	omic numbe ted with a	marks)
than 20. A desc amount of water Compound A B	$\begin{array}{c} r \\ r $	n of the produce B, C and D are a compound with a strong monob a gas that turns a compound with a tribasic acid a strong monoba	cts $(\mathbf{P}_1 - \mathbf{P}_9)$ re reacted v Description h a covalent repart acid red litmus blue h bleaching p	rormed when A is react with excess water are given on of products network structure network structure	omic numbe ted with a	marks)
than 20. A desc amount of water Compound A B	$\begin{array}{c} \text{Pription} \\ \text{P}_1 \\ \text{P}_2 \\ \text{P}_3 \\ \text{P}_4 \\ \text{P}_5 \\ \text{P}_6 \\ \text{P}_7 \end{array}$	n of the produce B, C and D are a compound with a strong monob a gas that turns a compound with a tribasic acid a strong monoba	cts $(\mathbf{P}_1 - \mathbf{P}_9)$ re reacted v Descriptio h a covalent r pasic acid red litmus blu h bleaching p asic acid acidic KMnC	vith excess water are given of products network structure	omic numbe ted with a	marks)
than 20. A desc amount of water Compound A B C	$\begin{array}{c} r \\ r $	n of the produce B, C and D are a compound with a strong monob a gas that turns a compound with a tribasic acid a strong monoba a gas that turns a	re reacted v Description h a covalent re- pasic acid red litmus blue h bleaching pasic acid acidic KMnC	rormed when A is react with excess water are given on of products network structure network structure	omic numbe ted with a	marks)

			nced chemical equations of the chemical sequences the chemical sequences the chemical sequences of the chemical sequences	ations for the following reactions.	Do not write in this column.
	T				
	11.	P ₃ wit	-		
	III.		h acidic K ₂ Cr ₂ O ₇		
		•••••	•••••••••••••••••••••••••••••••••••••••		
(b	of Al ₂ (SC	9 ₄) ₃ , H ns for	I_2SO_4 , $Na_2S_2O_3$, I_2SO_4 , $I_2SO_$	(50 marks) labelled P, Q, R, S, T and U containing aqueous solutions $BaCl_2$, $Pb(Ac)_2$ and KOH (not in order). Some useful 1 on mixing two solutions at a time are given below.	
			Solutions mixed	Observations	
		Ι	T + R	a clear colourless solution	
		Π	P + R	a white precipitate	
		III	T + S	a gelatinous white precipitate	
		IV	U + R	a white precipitate	
		V .	P + Q	a white precipitate, turns black on heating	
		VI	P + U	a white precipitate, dissolves on heating	
	(i) Identi	fy P to	• U .		
	P :		•••••	Q: R:	
	S :			T: U:	
	(ii) Give l	oalance	ed chemical equation	ns for each of the reactions I to VI.	
	_				
		•••••••	•••••••••••••••••••••••••••••••••••••••		
	III:	•••••	••••••		
	IV:	•••••			
	V:	format	ion of white precipi	itate:	\frown
					/ \
	¥7¥				
			indicate precipita		
3 . (a)	an excess a	amoun	t of $AB_2(s)$ in 1.	sparingly soluble salt $AB_2(s)$ was prepared by stirring 0 dm ³ of distilled water at 25 °C. The amount of $A^{2+}(aq)$ bus solution was found to be 2.0 × 10 ⁻³ mol.	
				to the dissolution of $AB_2(s)$ in the above system at 25 °C.	
	(ii) Write t		ression for the equili	brium constant for the equilibrium written in (i) above at 25 °C.	
		•••••			

 (ii) Calculate the value of the equilibrium constant stated in (ii) above at 25 °C. (iii) Calculate the value of the equilibrium constant stated in (ii) above at 25 °C. (iv) Another saturated aqueous solution of AB₂ was prepared by stirring an excess amount of AB₃(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(sq) is increased or decreased. (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. (c) A₂ at 25 °C. G₀ (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₂COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₂COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (iii) 100.0 cm³ of an aqueous solution of C₂H₂COOH as 1.0 g cm⁻³) (iv) an aqueous solution the density of C₂H₂COOH as 1.0 g cm⁻³) 		Do not
 column. (iv) Another saturated aqueous solution of AB₂ was prepared by stirring an excess amount of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (69 marks) (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. C₂H₃COOH(aq) + H₂Q(l) = C₂H₂COOH + H₃O⁺(aq) At 25 °C. K_d (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₂COOH(aq) was prepared by disolving 0.74 cm³ of C₂H₂COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 	(iii) above at 25 °C.	
 (iv) Another saturated aqueous solution of AB₂ was prepared by stirring an excess amount of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₃ at 25 °C. Giving reasons, predict whether the concentration of A^{2*}(aq) is increased or decreased. (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. C₂H₂COOH(aq) + H₂O(<i>t</i>) = C₂H₂COO(aq) + H₃O[*](aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₂COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₂COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₂COOH as 1.0 g cm⁻³) 	(iii) Calculate the value of the equinoritant constant stated in (b) how a	in this
 of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(<i>l</i>) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₃COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Claculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 		column.
 of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(<i>l</i>) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₃COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Claculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 		
 of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(<i>l</i>) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₃COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Claculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 	•••••	
 of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(<i>l</i>) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₃COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Claculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 		
 of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(<i>l</i>) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₃COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Claculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 		
 of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(<i>l</i>) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₃COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Claculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 		
 of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(<i>l</i>) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₃COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Claculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 		
 of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(<i>l</i>) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₃COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Claculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 		
 of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₂COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(<i>l</i>) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₃COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Claculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 	(iv) Another saturated aqueous solution of AB ₂ was prepared by stirring an excess amount	
the equilibrium constant for this system. (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB ₂ at 25 °C. Giving reasons, predict whether the concentration of A ^{2*} (aq) is increased or decreased. (b) In an aqueous solution, propanoic acid (C ₂ H ₃ COOH) ionizes as given below. C ₂ H ₃ COOH(aq) + H ₂ Q(l) = C ₂ H ₅ COO ⁻ (aq) + H ₃ O ⁺ (aq) At 25 °C, K _a (propanoic acid) = 1.0 × 10 ⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm ³ of an aqueous solution of C ₂ H ₃ COOH(aq) was prepared by dissolving 0.74 cm ³ of C ₂ H ₃ COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C ₂ H ₃ COOH as 1.0 g cm ⁻³)	of AB _a (s) in 2.0 dm ³ of distilled water at 25 °C. Giving reasons, predict the value of	
 (v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (b) In an aqueous solution, propanoic acid (C₂H₃COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(<i>t</i>) = C₂H₃COO²(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₃COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 	the equilibrium constant for this system.	
 of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₃COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(l) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₂COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 		
 of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₃COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(l) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₂COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 		
 of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₃COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(l) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₂COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 		
 of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C₂H₃COOH) ionizes as given below. C₂H₃COOH(aq) + H₂O(l) = C₂H₃COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₂COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₃COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₃COOH as 1.0 g cm⁻³) 	(v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution	
or decreased. (60 marks) (b) In an aqueous solution, propanoic acid (C ₂ H ₃ COOH) ionizes as given below. C ₂ H ₃ COOH(aq) + H ₂ O(l) = C ₂ H ₃ COO ⁻ (aq) + H ₃ O ⁺ (aq) At 25 °C, K _a (propanoic acid) = 1.0 × 10 ⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm ³ of an aqueous solution of C ₂ H ₃ COOH(aq) was prepared by dissolving 0.74 cm ³ of C ₂ H ₃ COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C ₂ H ₃ COOH as 1.0 g cm ⁻³)	of AB ₂ at 25 °C. Giving reasons, predict whether the concentration of A ²⁺ (aq) is increased	
 (b) In an aqueous solution, propanoic acid (C₂H₅COOH) ionizes as given below. C₂H₅COOH(aq) + H₂O(l) = C₂H₅COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₅COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₅COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₅COOH as 1.0 g cm⁻³) 		
 (b) In an aqueous solution, propanoic acid (C₂H₅COOH) ionizes as given below. C₂H₅COOH(aq) + H₂O(l) = C₂H₅COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₅COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₅COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₅COOH as 1.0 g cm⁻³) 		
 (b) In an aqueous solution, propanoic acid (C₂H₅COOH) ionizes as given below. C₂H₅COOH(aq) + H₂O(l) = C₂H₅COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₅COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₅COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₅COOH as 1.0 g cm⁻³) 		
 (b) In an aqueous solution, propanoic acid (C₂H₅COOH) ionizes as given below. C₂H₅COOH(aq) + H₂O(l) = C₂H₅COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₅COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₅COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₅COOH as 1.0 g cm⁻³) 		
 (b) In an aqueous solution, propanoic acid (C₂H₅COOH) ionizes as given below. C₂H₅COOH(aq) + H₂O(l) = C₂H₅COO⁻(aq) + H₃O⁺(aq) At 25 °C, K_a (propanoic acid) = 1.0 × 10⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₅COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₅COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₅COOH as 1.0 g cm⁻³) 		
$C_{2}H_{3}COOH(aq) + H_{2}O(l) \neq C_{2}H_{3}COO^{-}(aq) + H_{3}O^{+}(aq)$ At 25 °C, K_{a} (propanoic acid) = 1.0 × 10 ⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm ³ of an aqueous solution of $C_{2}H_{5}COOH(aq)$ was prepared by dissolving 0.74 cm ³ of $C_{2}H_{5}COOH$ in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of $C_{2}H_{5}COOH$ as 1.0 g cm ⁻³)	(60 marks	
$C_{2}H_{3}COOH(aq) + H_{2}O(l) \neq C_{2}H_{3}COO^{-}(aq) + H_{3}O^{+}(aq)$ At 25 °C, K_{a} (propanoic acid) = 1.0 × 10 ⁻⁵ (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm ³ of an aqueous solution of $C_{2}H_{5}COOH(aq)$ was prepared by dissolving 0.74 cm ³ of $C_{2}H_{5}COOH$ in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of $C_{2}H_{5}COOH$ as 1.0 g cm ⁻³)	(b) In an aqueous solution, propanoic acid (C_2H_5COOH) ionizes as given below.	
At 25 °C, K_a (propanoic acid) = 1.0×10^{-5} (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm ³ of an aqueous solution of C ₂ H ₅ COOH(aq) was prepared by dissolving 0.74 cm ³ of C ₂ H ₅ COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C ₂ H ₅ COOH as 1.0 g cm ⁻³)	$C_{A}H_{COOH(aq)} + H_{A}O(l) \approx C_{A}H_{COO}(aq) + H_{A}O^{+}(aq)$	
 (i) Write the expression for the equilibrium constant for the above reaction at 25 °C. (ii) 100.0 cm³ of an aqueous solution of C₂H₅COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₅COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C₂H₅COOH as 1.0 g cm⁻³) 		
(ii) 100.0 cm ³ of an aqueous solution of C ₂ H ₅ COOH(aq) was prepared by dissolving 0.74 cm ³ of C ₂ H ₅ COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C ₂ H ₅ COOH as 1.0 g cm ⁻³)	At 25 °C, K_a (propanoic acid) = 1.0 × 10	
0.74 cm ³ of C ₂ H ₅ COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C ₂ H ₅ COOH as 1.0 g cm ⁻³) (100)	(i) Write the expression for the equilibrium constant for the above reaction at 25 or	
0.74 cm ³ of C ₂ H ₅ COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C ₂ H ₅ COOH as 1.0 g cm ⁻³) (100)		
0.74 cm ³ of C ₂ H ₅ COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C ₂ H ₅ COOH as 1.0 g cm ⁻³) (100)		
0.74 cm ³ of C ₂ H ₅ COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C. (C = 12; O = 16; H = 1; consider the density of C ₂ H ₅ COOH as 1.0 g cm ⁻³) (100)	(ii) 100.0 cm ³ of an aqueous solution of C.H.COOH(aq) was prepared by dissolvin	g
(C = 12; O = 16; H = 1; consider the density of C_2H_5COOH as 1.0 g cm ⁻³)	(11) 100.0 cm ² of C H COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C	
	C_{2} 12 C_{2} C_{2} C_{3} C_{2} C_{3} C	
	$(C = 12; O = 10; H = 1, \text{ consider the density of } C_2 H_2 \in O \cap I \oplus I \oplus g \in I $	
		/
		11
(AA marke)		100
		1/ 100

Do not 4. (a) A, B, C and D are structural isomers having the molecular formula C_6H_{10} . None of them show write optical isomerism. All four isomers, A, B, C and D when treated with $HgSO_4/dil$. H_2SO_4 give in this products which react with 2,4-dinitrophenylhydrazine (2,4-DNP) to give coloured precipitates. column. Only A gives a precipitate with ammonical $AgNO_3$. A has only one position isomer, which is **B**. **B** is a chain isomer of **C**. **C** reacts with $HgSO_4/dil$. H_2SO_4 to give two products **E** and **F**. **D** reacts with $HgSO_4/dil. H_2SO_4$ to give only one product, which is **E**. (i) Draw the structures of A, B, C, D, E and F in the boxes given below. A B С D Е F (ii) Which of the compounds A, B, C and D gives a product that does not show diastereoisomerism when reacted separately with H₂ / Pd-BaSO₄ / quinoline? (iii) Draw, in the box given below, the structure of the product G obtained when A is reacted with excess HBr. G (iv) Draw the structures of products X and Y obtained in the following reactions of E, in the appropriate boxes. $\frac{\text{NaBH}_4}{\text{Methanol}} \mathbf{E} \xrightarrow{1. \text{C}_2\text{H}_5\text{MgBr}} 2. \text{H}^+/\text{H}_2\text{O}$ X Y Name a test to distinguish between X and Y. (60 marks)

- 8 -

AL/2020/02-E-II(B, C)(NEW)

பேத விலிலை சூற்தே /முழுப் பதிப்புரிமையுடையது/All Rights Reserved]

	றை திப்கீழை பாடத்திட்டம்/New Syllabus	
தே பான் இலங்கைப் பரடசைத் திணை	eoan சிலால எரைக்கு குளைக்களில் குகைக்கு குகைக்கு குறைக்கு குறைக்களில் குரைக்களில் குகு குகு சில்லாக குறைக்கு கு விக்கு குலங்கைப் புதலாக குறைக்கு குறைக்கு பிரிக்கு கிணைக்களில் இலங்கைப் பரிக்கை anka Department விகைக்கும் இருங்கைப் பரிக்கு கிணைக்களில் இலங்கைப் பரிக்கை கூறை சிலால் என்று குறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு விக்கு கிறைக்கு கிறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு விக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறை கிறைக்கு கிறைக்கு கிறை கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு குறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு குறைக்கு குறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு குறைக்கு கிறைக்கு குறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு குறைக்கு குறைக்கு குறைக்கு கிறைக்கு கிறைக்கு குறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு குறைக்கு கிறைக்கு குறைக்கு குறைக்கு குறைக்கு கிறைக்கு கிறைக்கு கிறைக்கு குறைக்கு குறைக்கு குறைக்கு கிறைக்கு குறைக்கு கிறைக்கு குறைக்கு கு குறைக்கு குறைக்	ந occ) பிற occ) த் திணைக்களம் nations, Sri Lanka ந occ) பிற occ) த் திணைக்களம்
	பைகை சைபது கலகிகை சரு (උසස් පෙළ) 5லாமக, 2020 ல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 eneral Certificate of Education (Adv. Level) Examination, 2020	
රසායත විදාහව இரசாயனவியல் Chemistry		EII
	* Universal gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ * Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$	

DADT	D		-		
PART	в -	— J	ESS	AY	

Answer two questions only. (Each question carries 150 marks.)

5. (a) A compound $XY_2Z_2(g)$ undergoes dissociation when heated to temperatures above 300 K as given below.

$$XY_2Z_2(g) \rightleftharpoons XY_2(g) + Z_2(g)$$

A sample of 7.5 g of $XY_2Z_2(g)$ was placed in an evacuated 1.00 dm³ rigid-closed container and the temperature was raised to 480 K.

Molar mass of $XY_2Z_2(g)$ is 150 g mol⁻¹. Use the approximate value of 4000 J mol⁻¹ for *RT* at 480 K. Assume ideal gas behaviour for all gases.

- (i) Calculate the number of moles of $XY_2Z_2(g)$ in the container before dissociation.
- (ii) When the above system reaches equilibrium at 480 K, the total number of moles in the container was found to be 7.5×10^{-2} mol. Calculate the number of moles of $XY_2Z_2(g)$, $XY_2(g)$ and $Z_2(g)$ in the equilibrium mixture at 480 K.
- (iii) Calculate the equilibrium constant K_c for the above reaction at 480 K.
- (iv) Calculate K_p for the equilibrium at 480 K.

(75 marks)

7048

- (b) For the reaction XY₂Z₂(g) → XY₂(g) + Z₂(g) described in (a), Gibbs free energies (G) at 480 K for XY₂Z₂(g), XY₂(g) and Z₂(g) are -60 kJ mol⁻¹, -76 kJ mol⁻¹ and -30 kJ mol⁻¹, respectively.
 - (i) Calculate ΔG (in kJ mol⁻¹) for the reaction at 480 K.
 - (ii) The magnitude of ΔS of the above reaction is 150 J K⁻¹ mol⁻¹ at 480 K. Calculate ΔH for the reaction at 480 K by using the appropriate sign (- or +) of ΔS .
 - (iii) By using the sign (- or +) of ΔH obtained in (ii), explain whether this reaction is exothermic or endothermic.
 - (iv) Deduce the enthalpy difference for the formation of $XY_2Z_2(g)$ from $XY_2(g)$ and $Z_2(g)$ at 480 K.
 - (v) If the bond enthalpy of the X-Z bond in $XY_2Z_2(g)$ is +250 kJ mol⁻¹, calculate the bond enthalpy of the Z-Z bond.

(Assume that $XY_2Z_2(g)$ has the structure $Z - \overset{\parallel}{X} - Z$)

(vi) If liquid XY_2Z_2 is used instead of gaseous XY_2Z_2 , giving reasons, explain whether the value of ΔH obtained for the reaction $XY_2Z_2(l) \rightarrow XY_2(g) + Z_2(g)$ is equal to, or higher or lower than ΔH obtained in (ii).

(75 marks)

AL/2020/02-E-II(B, C)(NEW)

6. (a) Consider the reaction given below occurring in a closed container at a given temperature T.

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

- (i) Write three expressions for the rate of reaction relevant to each of the compounds appearing in the reaction.
- (ii) This reaction was carried out at temperature T with an initial concentration of 0.10 mol dm^{-3} of N₂O₅(g). It was found that 40% of the initial amount was decomposed after a period of 400 s.
 - I. Calculate the average rate of decomposition of $N_2O_5(g)$ in this time interval.
 - II. Calculate average rates of formation of $NO_2(g)$ and $O_2(g)$.
- (iii) In another experiment, initial rates were measured for this reaction at 300 K and the results are given below.

$[N_2O_5(g)] / mol dm^{-3}$	0.01	0.02	0.03
Initial rate / mol dm ⁻³ s ⁻¹	6.930 × 10 ⁻⁵	1.386 × 10 ⁻⁴	2.079 × 10 ⁻⁴

Derive the rate law for the reaction at 300 K.

- (iv) Another experiment was carried out at 300 K with an initial concentration of 0.64 mol dm⁻³ of N₂O₅(g). It was found that the concentration of N₂O₅(g) which remained after a period of 500 s was 2.0×10^{-2} mol dm⁻³.
 - I. Calculate the half-life $(t_{1/2})$ of the reaction at 300 K.
 - II. Calculate the rate constant of the reaction at 300 K.
 - (v) This reaction proceeds through a mechanism involving the following elementary steps.

Step 1	:	$N_2O_5(g)$	≠	NO ₃ (g)	+	$NO_2(g)$: Fast
							O(g) : Slow
Step 3	:	$N_2O_5(g)$	+	O(g)	→	2NO ₂ (g) +	$O_2(g)$: Fast

Show that the above mechanism is consistent with the rate law of the reaction. (80 marks)

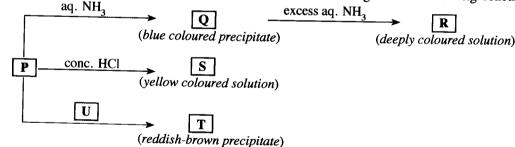
- (b) An ideal binary-liquid mixture was prepared by mixing two liquids of **A** and **B** in a closed evacuated container at temperature T. After establishing the equilibrium at temperature T, partial pressures of **A** and **B** in the vapour phase are P_A and P_B , respectively. At temperature T, the saturated vapour pressures of **A** and **B** are P_A° and P_B° , respectively. Mole fractions of **A** and **B** in solution are X_A and X_B , respectively.
 - (i) Show that $P_A = P_A^{\circ} X_A$ (Consider that the rates of vaporization and condensation are equal at equilibrium.)
 - (ii) In the above system at 300 K, the total pressure was 5.0×10^4 Pa. The saturated vapour pressures of pure A and B at 300 K, are 7.0×10^4 Pa and 3.0×10^4 Pa, respectively.
 - I. Calculate the mole fraction of A in the liquid phase of the equilibrium mixture.
 - II. Calculate the vapour pressure of A in the equilibrium mixture.

(70 marks)

7. (a) (i) To compare the properties of Electrolytic and Galvanic cells, copy and complete the following table using the given terms.

Terms: anode, cathode, positive, negative, spontaneous, non-spontaneous.

			L
r		Electrolytic cell	Galvanic cell
Α.	Oxidation half-reaction takes place at		
Β.	Reduction half-reaction takes place at	· · · · · · · · · · · · · · · · · · ·	
C.	Sign of E_{cell}°		
D.	Electron flow	From to	From to
E.	Spontaneity of the cell reaction		


(ii) An electrochemical cell was constructed at 300 K by using a Zn(s) anode, an aqueous alkaline electrolyte and a porous Pt cathode which facilitates the collection of oxygen $O_2(g)$ from air as shown below. As the cell operates ZnO(s) is produced.

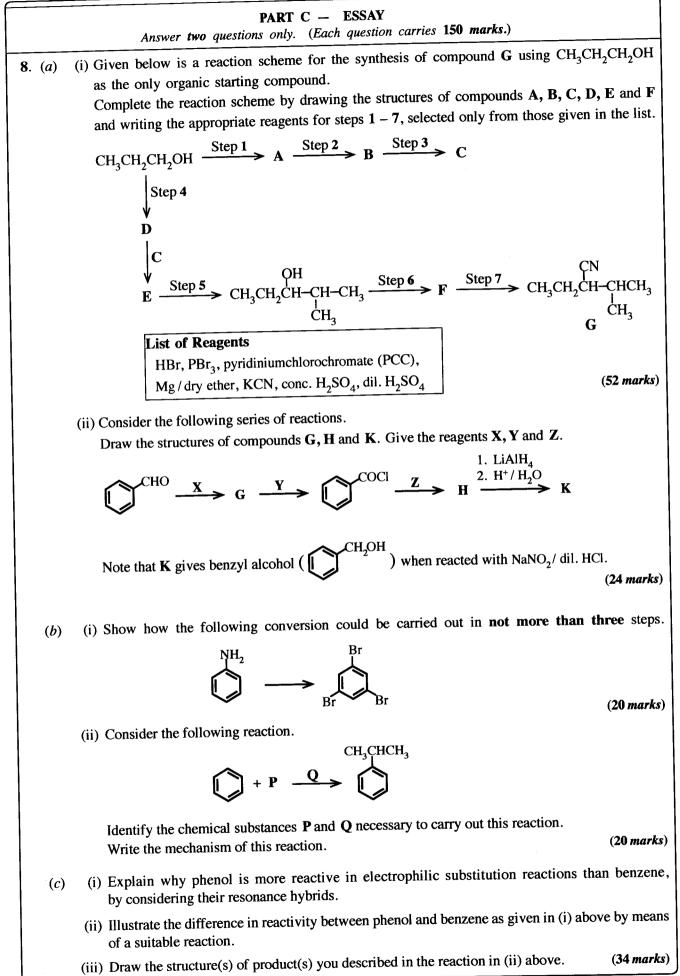
 $E_{\text{ZnO(s)}|\text{Zn(s)}|\text{OH}^{-}(\text{aq})}^{\circ} = -1.31 \text{ V} \text{ and } E_{\text{O}_{2}(\text{g})|\text{OH}^{-}(\text{aq})}^{\circ} = +0.34 \text{ V}$ $Zn = 65 \text{ g mol}^{-1}$, $O = 16 \text{ g mol}^{-1}$ and

1 F = 96,500 C

- Write the half-reactions occurring at anode I. and cathode.
- II. Write the overall cell reaction.
- III. Calculate the cell potential E_{cell}° at 300 K.
- State the direction of migration of OH-(aq) ions between the electrodes. IV. V.
 - When the cell operates for a period of 800 s at 300 K, 2 mol of $O_2(g)$ are consumed.
 - Calculate the number of moles of electrons passing through the cell. Α.
 - Β. Calculate the mass of ZnO(s) formed.
 - C. Calculate the current passing through the cell.

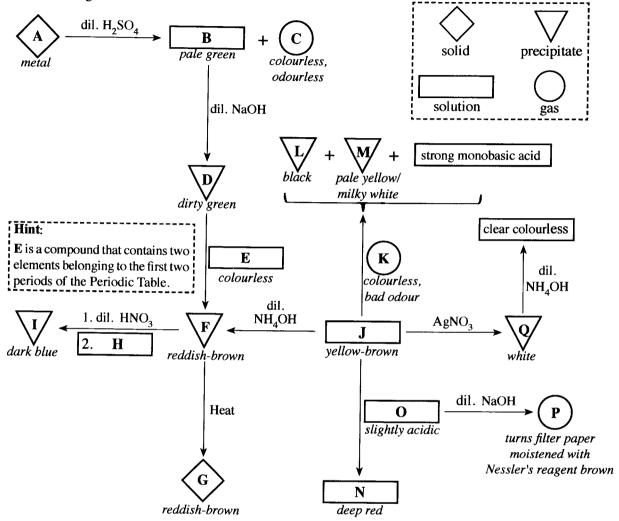
(b) A coloured complex ion **P** is formed when the salt
$$\mathbf{M}(NO_3)_n$$
 is dissolved in distilled water.
M is a transition element belonging to the 3*d* block. **P** undergoes the following reactions.

- T and U are coordination compounds each containing four elements. P, R and S are complex ions.
- (i) Identify the metal \mathbf{M} . Give the oxidation state of \mathbf{M} in complex ion \mathbf{P} .
- (ii) Give the value of n in $\mathbf{M}(NO_3)_n$.
- (iii) Write the complete electronic configuration of \mathbf{M} in complex ion \mathbf{P} .
- (iv) Write the chemical formulae of P, Q, R, S, T and U.
- (v) Give the IUPAC names of P, R, S, T and U.
- (vi) What is the colour of \mathbf{P} ?
- (vii) What would you expect to observe in I and II given below?
 - When H_2S gas is passed into an acidic solution containing P at room temperature I.
 - When the mixture obtained in I above is heated with dilute HNO₃ after the removal II. of dissolved H₂S
- (viii) Briefly describe a method with the aid of balanced chemical equations for determining the concentration of M^{n+} present in an aqueous solution, using the following chemicals.


KI, $Na_2S_2O_3$ and starch.

(75 marks)

(75 marks)


v Zn Electrolyte Porous Anode Cathode

[see page thirteen

9. (a) (i) Write the chemical formulae of the substances A – Q given in the flow chart below.
 (Note: Chemical equations and reasons are not expected for the identification of substances A – Q.) The symbols given in the box (dash lines) are used to represent solids, precipitates, solutions and gases.

- (ii) Write the complete electronic configuration of A.
- (iii) State the function of **E** in the conversion of **D** to **F**. Give the relevant balanced chemical equations for the stated function. (75 marks)
- (b) The solid X contains only Cu_2S and CuS. The following procedure was used to determine the percentage of Cu_2S in X.

Procedure

A 1.00 g portion of solid **X** was treated with 100.00 cm³ of 0.16 mol dm⁻³ KMnO₄ in dilute H_2SO_4 medium. This reaction gave Mn²⁺, Cu²⁺ and SO₄²⁻ as products. Thereafter, the excess KMnO₄ in this solution was titrated with 0.15 mol dm⁻³ Fe²⁺ solution. The volume required for the titration was 35.00 cm³.

- (i) Write the balanced ionic equations for the reactions taking place in the above procedure.
- (ii) Based on the answers to (i) above, determine the molar ratio between,
 - I. Cu_2S and $KMnO_4$
 - II. CuS and KMnO₄
 - III. Fe^{2+} and $KMnO_4$

(iii) Calculate the percentage by weight of Cu_2S in X. (Cu = 63.5, S = 32)

(75 marks)

- 10. (a) The following questions are based on the properties of titanium dioxide (TiO₂) and its manufacture carried out by the "Chloride Process".
 - (i) Name the raw materials used in this process.
 - (ii) Briefly describe the manufacturing process of TiO₂ giving balanced chemical equations where applicable.
 - (iii) State three properties of TiO_2 and give one use each, relevant to each property.
 - (iv) If you were to consider establishing a TiO_2 manufacturing plant in Sri Lanka, state three requirements that need to be fulfilled.
 - (v) Does the manufacturing process described in (ii) above contribute to global warming?
 Justify your answer. (50 marks)
 - (b) Currently, global warming due to change in greenhouse effect is significantly greater than that before the industrial revolution.
 - (i) Explain briefly what is meant by greenhouse effect.
 - (ii) Identify the major environmental problem that occurs due to global warming.
 - (iii) State two main natural gases that contribute to global warming.
 - (iv) Explain briefly how microorganisms contribute to the release of the gases you stated in (iii).
 - (v) In addition to the gases you stated in (iii), name two classes of synthetic volatile compounds that directly contribute to the global warming, and selecting one compound from each class, draw their structures.
 - (vi) Select one class of compounds from the two classes you stated in (v) that contributes to the catalytic degradation of ozone in the upper atmosphere.
 - (vii) The slow down of industrial activities due to the Covid-19 pandemic temporarily eased the global environmental issues in many countries. Justify this statement by using two main global environmental issues you have learnt. (50 marks)
 - (c) The following questions are based on the polymers given below.

Polyvinyl chloride (PVC), Polyethylene (PE), Polystyrene (PS), Bakelite,

Nylon 6.6, Polyethylene terephthalate (PET), Gutta percha

- (i) Draw the repeating units of four of the above polymers.
- (ii) Categorize each of the above seven (7) polymers as either,
 - I. natural or synthetic polymers.
 - II. addition or condensation polymers.
- (iii) Name the two monomers used in the formation of bakelite.
- (iv) Polymers can be grouped into two categories based on their thermal properties. State these two categories. Write to which of these categories PVC and bakelite belong.
- (v) Give one use each for three of the polymers given in the above list. (50 marks)

* * *

More Past Papers at tamilguru.lk

The Periodic Table

	1	Ì																2
1	H																	He
	3	4											5	6	7	8	9	10
2	Li	Be											B	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

NEW

Department of Examinations - Sri Lanka

G.C.E. (A/L) Examination - 2020

02 - Chemistry New Syllabus

Marking Scheme

3

This document has been prepared for the use of Marking Examiners. Some changes would be made according to the views presented at the Chief Examiners' meeting.

G.C.E. (A/L) Examination - 2020

02 - Chemistry (New Syllabus)

Distribution of Marks

Paper I	:		1 X 50	=	50
Paper II	:				
Part	A	:	100 X 4	Ξ	400
Part	В	:	150 X 2	=	300
Part	С	:	150 X 2	=	300
Tota	al		,	=	1000
Рар		- Fina	al Marks	=	100

Common Techniques of Marking Answer Scripts.

It is compulsory to adhere to the following standard method in marking answer scripts and entering marks into the mark sheets.

- 1. Use a red color ball point pen for marking. (Only Chief/Additional Chief Examiner may use a mauve color pen.)
- 2. Note down Examiner's Code Number and initials on the front page of each answer script.
- 3. Write off any numerals written wrong with a clear single line and authenticate the alterations with Examiner's initials.
- 4. Write down marks of each subsection in a \triangle and write the final marks of each question as a rational number in a \square with the question number. Use the column assigned for Examiners to write down marks.

MCQ answer scripts: (Template)

- 1. Marking templets for G.C.E.(A/L) and GIT examination will be provided by the Department of Examinations itself. Marking examiners bear the responsibility of using correctly prepared and certified templates.
- 2. Then, check the answer scripts carefully. If there are more than one or no answers Marked to a certain question write off the options with a line. Sometimes candidates may have erased an option marked previously and selected another option. In such occasions, if the erasure is not clear write off those options too.
- 3. Place the template on the answer script correctly. Mark the right answers with a 'V' and the wrong answers with a 'X' against the options column. Write down the number of correct answers inside the cage given under each column. Then, add those numbers and write the number of correct answers in the relevant cage.

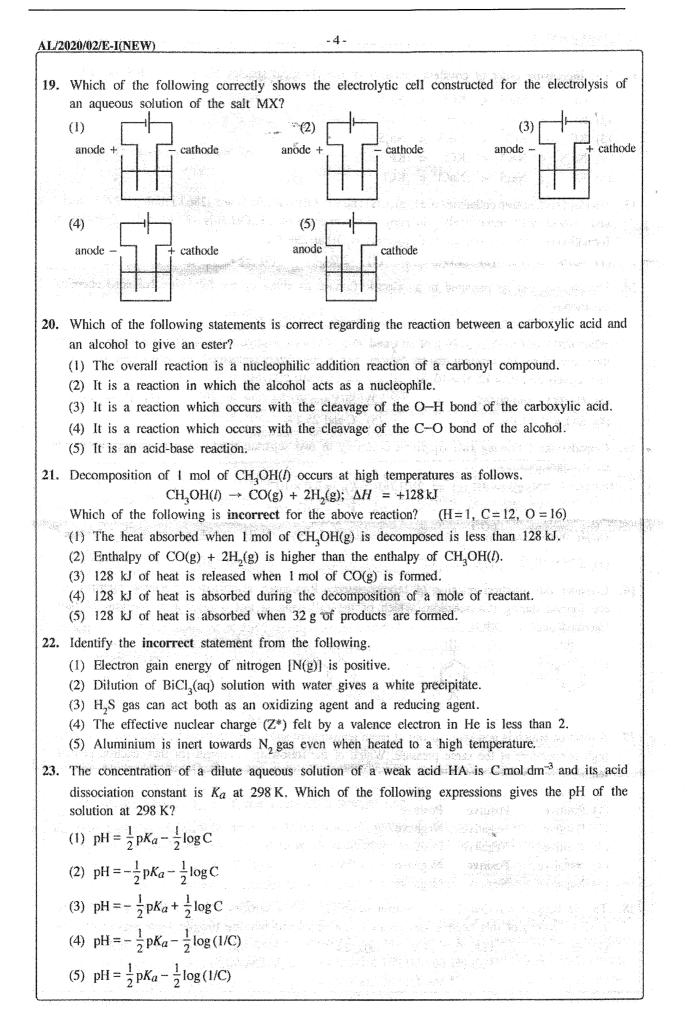
structured essay type and assay type answer scripts:

- 1. Cross off any pages left blank by candidates. Underline wrong or unsuitable answers. Show areas where marks can be offered with check marks.
- 2. Use the right margin of the overland paper to write down the marks.
- 3. Write down the marks given for each question against the question number in the relevant cage on the front page in two digits. Selection of questions should be in accordance with the instructions given in the question paper. Mark all answers and transfer the marks to the front page, and write off answers with lower marks if extra questions have been answered against instructions.
- 4. Add the total carefully and write in the relevant cage on the front page. Turn pages of answer script and add all the marks given for all answers again. Check whether that total tallies with the total marks written on the front page.

Preparation of Mark Sheets.

Except for the subjects with a single question paper, final marks of two papers will not be calculated within the evaluation board this time. Therefore, add separate mark sheets for each of the question paper. Write paper 01 marks in the paper 01 column of the mark sheet and write them in words too. Write paper II Marks in the paper II Column and wright the relevant details. For the subject 51 Art, marks for Papers 01, 02 and 03 should be entered numerically in the mark sheets.

றை கிப்சீர்கை/புதிய பாடத்திட்டம்/New Syllabus	2004 2004
	and a second
பிறை மாப்புல்லில் 8 வே மீல்க கொடுக்கு இதுகை இதுக்கு குறைக்கு குறைக்களம் இல்லைய் பிடன்க கொடிய காற்குக்கு காம் இலங்கைப் பிறைக்கு கான்கள் இல்லையில் பிடன்க கொடுக்களம் இல்லையில் பிடன்க மா. Sri Lanka Department இலங்கைப் பிறிக்கைக்கு மீல்லாக்களமை இல்லையில் பிடன்க கிறைக்களம் இலங்கைப் பிறைக்கு காறுக்குக்கு இல்லைக்களம் இல்லையில் பிடன்க விறைக்களம் இலங்கை இறைகள் கிறைக்குக்கு இல்லைக்களம் இல்லையில் விறைக்களம் இலங்கு இறைகள் கிறைக்கு கிறைக்குக்கு இல்லைக்களம் இல்லையில் விறைக்களம் இலங்கு இன்னு கிறைக்குக்களம் இல்லைக்களம் இல்லையில் விறைக்களம் இலங்கு இன்னு கிறைக்கு கிறைக்குக்கு இல்லைக்களம் இல்லையில் விறைக்களம் இல்லைக்களம் இலங்கை இன்னு கேக்கு கிறைக்களம் இல்லையில் விறைக்களம் இலங்கை குறைகு குறைக்கள் கிறைக்கு இல்லையில் கைக்கியிய பொதுத் தராதரப் பத்திர (உயர் தரிப் பிரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020	டிரைம் வகிர்கள் திணைக்களம் மிரை, Sri Lanka டிரைம் வேணிஷும் . திணைக்களம்
සායන විදසාව I namuanajiuni I Chemistry I	தியாலம்
structions: Periodic Table is provided. This paper consists of 09 pages. Answer all the questions. Use of calculators is not allowed. Write your Index Number in the space provided in the answer sheet. Follow the instructions given on the back of the answer sheet carefully. In each of the questions 1 to 50, pick one of the alternatives from (1), (2), (3), (4), (5) which or most appropriate and mark your response on the answer sheet.	is correct ccordance
 Positive rays inside a cathode ray tube II. Radioactivity by certain types of nuclei The two scientists who discovered the above stated I and II respectively, are, (1) J. J. Thomson and Henry Becquerel (2) Eugen Goldstein and Robert Millikan (3) Henry Becquerel and Eugen Goldstein 	
$l = 0$ and $m_l = -1$ respectively are,	
ecule MCl ₃ which has a dipole moment. The group of the Periodic Table to which M	1 belongs is
The number of unstable Lewis dot-dash structures that can be drawn for the pero io: molecule (formula HNO_4 , $H-\ddot{O}-\ddot{O}-\ddot{O}-\ddot{O}$) is,	xynitric aclo
(1) 1 (2) 2 (3) 3 (4) 4 (5) 5 The IUPAC name of the given compound is, (1) 1-bromo-4-methyl-5-hydroxypent-1-en-3-one (2) 5-bromo-1-hydroxy-2-methylpent-4-en-3-one (3) 1-bromo-5-hydroxy-4-methylpent-1-en-3-one	
	$\begin{array}{c} \label{eq:product} \begin{array}{c} \end{tildeling} \end{tildeling}$


4

Ş

- 2 -AL/2020/02/E-I(NEW F^{-} , S^{2-} , Cl^{-} is, 6. The decreasing order of radii of the species O, O^{2-} , F, (1) $S^{2-} > C\Gamma > O^{2-} > F > O > F$ (2) $S^{2-} > CI^- > O^{2-} > F^- > F > O^{2-}$ (3) $Cl^- > S^{2-} > O^{2-} > F^- > O > F$ (4) $Cl^- > S^{2-} > F^- > O^{2-} > O > F$ (5) $S^{2^-} > C\Gamma > O^{2^-} > O > F > F$ 7. A rigid-closed container contains n_1 moles of an ideal gas at temperature $T_1(K)$ and pressure $P_1(Pa)$. When an additional amount of the gas was inserted into the container, the new temperature and pressure were T_2 and P_2 , respectively. The total number of moles of the gas now in the container is, (2) $\frac{n_1TP}{TP}$ (3) $\frac{TP}{22}$ (4) $\frac{n_1TP}{TP}$ (5) $\frac{n_1 T_2 P_1}{T_1 P_2}$ (1) -8. The total number of electrons exchanged in the reaction of the oxidation of ethanol (C₂H₅OH) to acetic acid (CH₂COOH) using acidic K₂Cr₂O₇ solution is, (3) 10 (4) 12 (5) 14 (1) 6(2) 8 9. Which compound of the following, can undergo aldol condensation, when reacted with aqueous NaOH? (2) CH_3C-OCH_3 (3) $H-C-OCH_3$ (4) CH_3CH_2C-H (5) $(CH_3)_3CC-H$ (1) CH,C–OH 10. AX(s), A₂Y(s) and AZ(s) are sparingly soluble salts in water having K_{sp} values of 1.6×10^{-9} , 3.2×10^{-11} and 9.0×10^{-12} , respectively at 25 °C. Which of the following shows the order of the three saturated solutions of these salts in decreasing concentration of cation A+(aq), at 25 °C? (1) $AX(s) > A_2Y(s) > AZ(s)$ (2) $A_{2}Y(s) > AX(s) > AZ(s)$ (3) $AX(s) > AZ(s) > A_2Y(s)$ (4) $A_Y(s) > AZ(s) > AX(s)$ (5) $AZ(s) > A_{2}Y(s) > AX(s)$ 11. Consider the following compounds. CH₃ СН,СН,СН,СН,СН,ОН CH,CH,CH,CH,CH,CH, CH,CCH,CH, CH,CH,CH,CH,CHO CH,CCHO \mathbf{C} Relative 88 86 86 86 molecular mass Variation of boiling points of these compounds is best shown by, B.P B.P B.P B.P BJ A BCDE AB C DE ABCDE ABCDE ABCDE (4)(5)(I)(2)(3)

See page three

- 3 -AL/2020/02/E-I(NEW) 12. The increasing order of covalent character of the chemical species NaCl, Na₂S, KF and KCl is, < NaCl < KCl < Na₅S (1) KF < NaCl < KF < Na₂S (2) KCl (3) KF < KCl < NaCl < Na₂S (4) Na₂S < NaCl < KCl < KF < Na,S < NaCl < KCl (5) KF 13. Standard combustion enthalpies of $H_2(g)$, C(s) and CH₃OH(l) at 298 K are -286 kJ mol⁻¹, -393 kJ mol⁻¹ and -726 kJ mol^{-1} , respectively. Enthalpy of vaporization of CH₃OH(*l*) is +37 kJ mol}^{-1}. Enthalpy of formation (kJ mol⁻¹) of one mole of gaseous CH₃OH at 298 K is, (5) +202 (3) -202(4) +84 (1) -276(2) -23914. Phosphorous can be prepared in an electric furnace as given by the following balanced chemical equation. $2 \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2} + 6 \operatorname{SiO}_{2} + 10 \operatorname{C} \rightarrow 6 \operatorname{CaSiO}_{3} + 10 \operatorname{CO} + \operatorname{P}_{4}$ When 620 g of Ca₄(PO₄), 180 g of SiO, and 96 g of C were reacted, 50 g of P₄ were obtained. Under these conditions, the limiting reagent (reagent that is completely consumed) and percentage yield of P4 respectively are, (C = 12, O = 16, Si = 28, P = 31, Ca = 40)(3) C and 50.4% (1) $Ca_3(PO_4)_2$ and 80.7% (2) SiO_2 and 80.7% (4) SiO_2 and 40.3% (5) C and 25.2% 15. Consider the following two equilibria occurring in two separate rigid-closed containers under the same conditions. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) ; K_{P_1} = 3.0 \times 10^{-4}$ $NH_3(g) + H_2S(g) \rightleftharpoons NH_4HS(g); K_{P_3} = 8.0 \times 10^{-4}$ Under these conditions K_p for the equilibrium $2H_2S(g) + N_2(g) + 3H_2(g) \rightleftharpoons 2NH_4HS(g)$ is, (2) 7.2×10^{-10} (3) 1.92×10^{-8} (4) 3.40×10^{-6} (5) 3.75×10^{-2} (1) 5.76×10^{-12} 16. Consider the nitration reaction of bromobenzene. Resonance stabilized carbocation intermediates are formed during this reaction. Which of the following is not a resonance structure of these intermediates? $(3) + \bigvee_{+} NO_2 \quad (4) + \bigvee_{+} O_2 (4) + \bigvee_{$ (1)17. A reaction which is non-spontaneous at room temperature and 1 atm pressure becomes spontaneous at high temperature at the same pressure. Which of the following is correct for this reaction at room temperature? (Assume that ΔH and ΔS do not change with temperature and pressure.) ΔH AS. ΔG Positive Positive (1) Positive (2) Positive Negative Negative Positive (3) Positive Negative Positive Negative (4) Negative Negative Negative (5) Negative 18. The de Broglie wavelength of a neutron travelling with a velocity v is λ . If the kinetic energy $E(E = \frac{1}{2}mv^2)$ of this neutron is increased four times, the new de Broglie wavelength would be, (5) 162 (4) 4λ $\underline{\lambda}$ $\underline{\lambda}$ (1)(2)(3) 2λ 2

24.	The strength of a H_2O_2 solution can be expressed as the volume of O_2 produced at standard temperature and pressure (STP). For example, a litre of 20 volume strength H_2O_2 solution will produce 20 litres of O_2 gas at STP ($2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$). (Assume that 1 mole of gas has 22.4 litres volume at STP.)
	A bottle labelled X contains H_2O_2 solution. When 25.0 cm ³ of solution X was titrated with 1.0 mol dm ⁻³ KMnO ₄ in the presence of dilute H_2SO_4 the volume required to reach the end point was 25.0 cm ³ . The volume strength of solution X is, (1) 15 (2) 20 (3) 25 (4) 28 (5) 30
	$M(OH)_2(s)$ is a sparingly water soluble salt formed by the reaction between $M^{2+}(aq)$ and $OH^{-}(aq)$ ions at 298 K. The solubility (mol dm ⁻³) of $M(OH)_2(s)$ in water at pH = 5 is, $(K_{sp M(OH)_2} = 4.0 \times 10^{-36} \text{ at } 298 \text{ K}).$
	(1) $\sqrt{2} \times 10^{-18}$ (2) 2×10^{-18} (3) 1×10^{-18} (4) $\sqrt[3]{2} \times 10^{-12}$ (5) 1×10^{-12}
26.	Which of the following correctly denotes the standard galvanic cell constructed by using a standard hydrogen electrode, a standard Mg-electrode and a salt-bridge at 298 K? (1) Mg(s) $ Mg^{2+}(aq, 1.00 \text{ mol } dm^{-3}) H^{+}(aq, 1.00 \text{ mol } dm^{-3}) H_{2}(g) Pt(s)$ (2) Pt(s) $ H_{2}(g) H^{+}(aq, 1.00 \text{ mol } dm^{-3}) Mg^{2+}(aq, 1.00 \text{ mol } dm^{-3}) Mg(s)$ (3) Mg(s), Mg ²⁺ (aq, 1.00 mol $dm^{-3}) H^{+}(aq, 1.00 \text{ mol } dm^{-3}) H_{2}(g) Pt(s)$ (4) Mg(s) $ Mg^{2+}(aq, 1.00 \text{ mol } dm^{-3}), H^{+}(aq, 1.00 \text{ mol } dm^{-3}), H_{2}(g) Pt(s)$ (5) Pt(s), $H_{2}(g) H^{+}(aq, 1.00 \text{ mol } dm^{-3}) Mg^{2+}(aq, 1.00 \text{ mol } dm^{-3}), Mg(s)$
27.	The following procedure was carried out at 298 K to determine the distribution coefficient K_D of a monobasic organic acid between dichloromethane and water. 50.00 cm ³ of a 0.20 mol dm ⁻³ aqueous solution of acid were mixed vigorously with 10.00 cm ³ of dichloromethane and the two layers were allowed to separate. Thereafter, the dichloromethane layer in the bottom of the flask was drained out. 10.00 cm ³ of 0.02 mol dm ⁻³ NaOH(aq) solution were required to neutralize the acid remaining in the aqueous layer. (Assume that the acid does not dimerize in the organic phase.) K_D of the acid between dichloromethane and water at 298 K is, (1) 0.05 (2) 0.25 (3) 4.00 (4) 20.00 (5) 245.00
28.	A reaction $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$ occurs in a rigid-closed container at a given temperature. After a certain time, it was found that the rate of the reaction with respect to consumption of $C_2H_4(g)$ was x mol dm ⁻³ s ⁻¹ . Which of the following shows the rates of consumption of $O_2(g)$, formation of $CO_2(g)$ and formation of $H_2O(g)$ respectively, during that time? rate / mol dm ⁻³ s ⁻¹
	$O_2(g) = CO_2(g) = H_2O(g)$
	(1) $\frac{3}{x}$ $\frac{2}{x}$ $\frac{2}{x}$ (2) x x x
	$(3) \frac{x}{2} \frac{x}{2}$
	$(4) \qquad \qquad$
	(5) $3x$ $(2x$ of all $2x$ for a start of the space sector is the sector x_1 by the sector x_2 by y_1 and y_2 by y_3 and y_4 by y_5 and y_4 by y_5 and y_4 by y_5 by y
29.	Consider the following reaction occurring in a rigid-closed container at temperature T. $M(g) + Q(g) \rightarrow R(g) + Z(g)$
	The rate of reaction doubled when the concentration of M was doubled. The rate of reaction is

	020/02/E-I(NEW)		- O	· · · · · · · · · · · · · · · · · · ·	
20	Consider the follo	wing position and	emo		دی. محمد این محمد می از این مربع میرد.
30.		COT		n definiste der Alter Maren. Nach der Anter	
	n an	人 ² ",	CI,/AICI,	1. LiAlH ₄	n de la constante de la constan La constante de la constante de
		\cup -	$\xrightarrow{\text{Cl}_2/\text{AICl}_3} \mathbf{P}$	2. H ⁺ /H ₂ O	
	P and Q respecti	vely could be,	****		
	CO.H	СНО	CO,H	СН,ОН	$(3) \qquad (3) $
	(1) $\sum_{n=1}^{\infty}$ and	A	(2) (2) and	2 I I I M I I	in the and the
	CI	CI	CI	CI CI	
	COCI	CH,CI	(5) $\Gamma_2^{O_2H}$	СНОН	personal de la companya de
	(4) 10001 and		and and	1 合	
		Y CI	an Katalan	L.	
	For each of the	questions 31 to 4	0. one or more	responses out of 1	the four responses (a), (b),
	(c) and (d) given	n is/are correct. S	Select the correct	response / response	es. In accordance with the
	instructions given	on your answer	sheet, mark	ere Wryski, to Bullado 1	
		· · · · · · · · · · · · · · · · · · ·		orrect.	
				orrect.	
			(c) and (a) are c (d) and (a) are c	orrect.	
					sponses is correct.
			nary of above In	한 승규는 것이 가지 않는 것이 많은 것을 알 수 있다.	
	(1)	(2)	(3)	(4)	(5)
	Only (a) and (b)	Only (b) and (c)	Only (c) and (d)	Only (d) and (a)	Any other number or
	are correct	are correct	are correct	are correct	combination of responses is correct
31.	compounds?	ay ing dalatin s			d-block elements and their
31.	compounds?(a) Among the 3(b) The radii of	d-block elements, atoms (Sc to Cu)	Sc is not consid decrease from le	ered as a transitic eft to right.	d-block elements and their
31.	compounds? (a) Among the 3 (b) The radii of (c) [Ni(NH ₃) ₆] ²⁺	d-block elements, atoms (Sc to Cu) is blue in colour	Sc is not consid decrease from le whereas [Zn(NH	ered as a transitic eft to right. $_{3})_{4}]^{2+}$ is colourless	d-block elements and their on element.
с. 	compounds? (a) Among the 3 (b) The radii of (c) $[Ni(NH_3)_6]^{2+}$ (d) The IUPAC 1	<i>d</i> -block elements, atoms (Sc to Cu) is blue in colour name of K ₂ NiCl ₄	Sc is not consid decrease from le whereas [Zn(NH is dipotassium te	ered as a transitic eft to right. ${}_{3}{}_{4}{}_{1}^{2+}$ is colourless trachloronickelate	d-block elements and their on element. (II).
с. 	compounds? (a) Among the 3 (b) The radii of (c) [Ni(NH ₃) ₆] ²⁺	d-block elements, atoms (Sc to Cu) is blue in colour name of K ₂ NiCl ₄ s is/are correct re H	Sc is not consid decrease from le whereas [Zn(NH is dipotassium to garding the follow	ered as a transitic eft to right. ${}_{3})_{4}$] ²⁺ is colourless strachloronickelate wing molecule?	d-block elements and their on element. (II).
с. 	compounds? (a) Among the 3 (b) The radii of (c) $[Ni(NH_3)_6]^{2+}$ (d) The IUPAC 1	d-block elements, atoms (Sc to Cu) is blue in colour name of K ₂ NiCl ₄ s is/are correct re H	Sc is not consid decrease from le whereas [Zn(NH is dipotassium to garding the follow	ered as a transitic eft to right. ${}_{3})_{4}$] ²⁺ is colourless strachloronickelate wing molecule?	d-block elements and their on element. (II),
с. 	compounds? (a) Among the 3 (b) The radii of (c) $[Ni(NH_3)_6]^{2+}$ (d) The IUPAC 1	d-block elements, atoms (Sc to Cu) is blue in colour name of K ₂ NiCl ₄ s is/are correct re H	Sc is not consid decrease from le whereas [Zn(NH is dipotassium to garding the follow	ered as a transitic eft to right. ${}_{3})_{4}$] ²⁺ is colourless strachloronickelate wing molecule?	d-block elements and their on element. (II),
с. 	compounds? (a) Among the 3 (b) The radii of (c) $[Ni(NH_3)_6]^{2+}$ (d) The IUPAC 1	d-block elements, atoms (Sc to Cu) is blue in colour name of K ₂ NiCl ₄ s is/are correct re H	Sc is not consid decrease from le whereas [Zn(NH is dipotassium te	ered as a transitic eft to right. ${}_{3})_{4}$] ²⁺ is colourless strachloronickelate wing molecule?	d-block elements and their on element. (II),
с. 	 compounds? (a) Among the 3 (b) The radii of (c) [Ni(NH₃)₆]²⁺ (d) The IUPAC 1 Which statement/ 	d-block elements, atoms (Sc to Cu) is blue in colour name of $K_2 NiCl_4$ s is/are correct re H H-Cp- H ed P, Q, R and S	Sc is not consid decrease from k whereas [Zn(NH is dipotassium to garding the follow $O_Q - C_R = C_S - C_T = C_L + C_L + C_L$ lie on a straight	ered as a transitic eft to right. ${}_{3})_{4}$] ²⁺ is colourless strachloronickelate wing molecule? O_{U} line.	d-block elements and their on element. (II),
С. 	 compounds? (a) Among the 3 (b) The radii of (c) [Ni(NH₃)₆]²⁺ (d) The IUPAC 1 Which statement/ 	d-block elements, atoms (Sc to Cu) is blue in colour name of $K_2 NiCl_4$ s is/are correct re $H = \begin{pmatrix} H \\ I \\ H \\$	Sc is not consid decrease from key whereas [Zn(NH is dipotassium to garding the follow $O_Q - C_R = C_S - C_I = C_I$ H_v lie on a straight ie on a straight	ered as a transitic eft to right. ₃) ₄] ²⁺ is colourless trachloronickelate wing molecule? Ou line.	d-block elements and their on element. (II),
с. 	 compounds? (a) Among the 3 (b) The radii of (c) [Ni(NH₃)₆]²⁺ (d) The IUPAC 1 Which statement/ (a) Atoms labelle (b) Atoms labelle (c) Atoms labelle 	d-block elements, atoms (Sc to Cu) is blue in colour name of K_2NiCl_4 s is/are correct re $H - C_p - H$ ed P, Q, R and S ed Q, R, S and T ed R, S, T, U and	Sc is not consid decrease from k whereas [Zn(NH is dipotassium to garding the follow $O_Q - C_R = C_S - C_T = C_V$ H_V lie on a straight d V lie on the sa	ered as a transitic eft to right. $_{3})_{4}$] ²⁺ is colourless etrachloronickelate wing molecule? $_{U}$ line. t line. t line. ame plane.	d-block elements and their on element. (II).
32.	 compounds? (a) Among the 3 (b) The radii of (c) [Ni(NH₃)₆]²⁺ (d) The IUPAC 1 Which statement/ (a) Atoms labella (b) Atoms labella (c) Atoms labella (d) Atoms labella 	d-block elements, atoms (Sc to Cu) is blue in colour name of $K_2 NiCl_4$ s is/are correct re H $H - C_P$ H ed P, Q, R and S ed Q, R, S and T ed R, S, T, U and ed R, S, T and U	Sc is not consid decrease from 16 whereas [Zn(NH is dipotassium to garding the follow $O_Q - C_R = C_S - C_T = C_H_V$ lie on a straight lie on a straight d V lie on the sa J lie on a straight	ered as a transition off to right. $_{3})_{4}]^{2+}$ is colourless trachloronickelate wing molecule? D_{U} t line. t line. t line. t line. t line.	<i>d</i> -block elements and their on element. (11),
32.	 compounds? (a) Among the 3 (b) The radii of (c) [Ni(NH₃)₆]²⁺ (d) The IUPAC 1 Which statement/ (d) Atoms labella (b) Atoms labella (c) Atoms labella (d) Atoms labella (d) Atoms labella (d) Atoms labella 	d-block elements, atoms (Sc to Cu) is blue in colour name of K_2NiCl_4 s is/are correct re $H = \frac{H}{I}$ H= C_1^P H ed P, Q, R and S ed Q, R, S and T ed R, S, T, U and ed R, S, T and U (g), 0.10 moles of	Sc is not consid decrease from le whereas [Zn(NH is dipotassium to garding the follow $O_Q - C_R = C_S - C_T = ($ H_V lie on a straight d V lie on the sa lie on a straight f H_2(g) and 0.40	ered as a transitic eft to right. $_{3})_{4}]^{2+}$ is colourless trachloronickelate wing molecule? D_{U} fine. t line. t line. t line. t line. moles of NH ₃ (g) v	d-block elements and their on element. (II). were inserted into a 1.0 dm ³
32.	 compounds? (a) Among the 3 (b) The radii of (c) [Ni(NH₃)₆]²⁺ (d) The IUPAC 1 Which statement/ (a) Atoms labella (b) Atoms labella (c) Atoms labella (d) Atoms labella (d) Atoms labella (d) Atoms labella (d) Atoms labella (e) Atoms labella (f) Atoms labella (g) Atoms labella 	d-block elements, atoms (Sc to Cu) is blue in colour name of K_2NiCl_4 s is/are correct re $H = \frac{H}{L}$ ed P, Q, R and S ed Q, R, S and T ed R, S, T, U and ed R, S, T and U (g), 0.10 moles of uner and allowed	Sc is not consid decrease from 16 whereas [Zn(NH is dipotassium to garding the follow $O_Q - C_R = C_S - C_T = C_T - C_$	ered as a transition eff to right. $_{3})_{4}]^{2+}$ is colourless etrachloronickelate wing molecule? D_{U} f line. t line. ame plane. t line. moles of NH ₃ (g) w um at 500 K as plane.	d-block elements and their on element. (II). were inserted into a 1.0 dm ³
32.	compounds? (a) Among the 3 (b) The radii of (c) $[Ni(NH_3)_6]^{2+}$ (d) The IUPAC 1 Which statement/ (a) Atoms labelle (b) Atoms labelle (c) Atoms labelle (d) Atoms labelle (d) Atoms labelle (d) Atoms labelle (d) Atoms labelle (l) Atoms labelle	d-block elements, atoms (Sc to Cu) is blue in colour name of K ₂ NiCl ₄ s is/are correct re $H = \frac{H}{H}$ ed P, Q, R and S ed Q, R, S and T ed R, S, T, U and ed R, S, T and U (g), 0.10 moles of uiner and allowed H ₂ (g) \rightleftharpoons 2NH ₃ (g)	Sc is not consid decrease from key whereas [Zn(NH is dipotassium to garding the follow $O_Q - C_R = C_S - C_I = (C_S - C_I)^T$ Hy lie on a straight I lie on a straight I lie on a straight I lie on a straig	ered as a transition off to right. $_{3})_{4}]^{2+}$ is colourless trachloronickelate wing molecule? $_{U}$ t line. t line. t line. t line. t line. moles of NH ₃ (g) w um at 500 K as a $_{0}^{2}$ mol ⁻² dm ⁶	d-block elements and their on element. (11), were inserted into a 1.0 dm ³ given below.
32.	compounds? (a) Among the 3 (b) The radii of (c) $[Ni(NH_3)_6]^{2+}$ (d) The IUPAC 1 Which statement/ (a) Atoms labella (b) Atoms labella (c) Atoms labella (d) Atoms labella (d) Atoms labella (d) Atoms labella (g) + 3 Which of the for	d-block elements, atoms (Sc to Cu) is blue in colour name of $K_2 NiCl_4$ s is/are correct re $H - C_p - P_h$ ed P, Q, R and S ed Q, R, S and T ed R, S, T, U and ed R, S, T and U (g), 0.10 moles of uner and allowed $H_2(g) \rightleftharpoons 2NH_3(g)$ llowing statement/	Sc is not consid decrease from 16 whereas [Zn(NH is dipotassium to garding the follow $O_Q - C_R = C_S - C_T = C_1 + C_2 + C_$	ered as a transition off to right. $_{3})_{4}]^{2+}$ is colourless trachloronickelate wing molecule? $_{U}$ t line. t line. t line. t line. t line. moles of NH ₃ (g) w um at 500 K as a $_{0}^{2}$ mol ⁻² dm ⁶	d-block elements and their on element. (II). were inserted into a 1.0 dm ³
32.	compounds? (a) Among the 3 (b) The radii of (c) $[Ni(NH_3)_6]^{2+}$ (d) The IUPAC 1 Which statement/ (a) Atoms labella (b) Atoms labella (c) Atoms labella (d) Atoms labella (d) Atoms labella (d) Atoms labella (d) Atoms labella (g) 43 Which of the following the follow	d-block elements, atoms (Sc to Cu) is blue in colour name of $K_2 NiCl_4$ s is/are correct re H H - C_p - H ed P, Q, R and S ed Q, R, S and T ed R, S, T, U and ed R, S, T, U and ed R, S, T and U (g), 0.10 moles of uner and allowed $H_2(g) \rightleftharpoons 2NH_3(g)$ llowing statement/ um? Q_C is the res	Sc is not consid decrease from 16 whereas [Zn(NH is dipotassium to garding the follow $O_Q - C_R = C_S - C_T = (C_S - C_S - C$	ered as a transition eff to right. $_{3})_{4}]^{2+}$ is colourless etrachloronickelate wing molecule? D_{U} t line. t l	d-block elements and their on element. (11). were inserted into a 1.0 dm ³ given below. the system from the initial
32.	compounds? (a) Among the 3 (b) The radii of (c) $[Ni(NH_3)_6]^{2+}$ (d) The IUPAC 1 Which statement/ (a) Atoms labella (b) Atoms labella (c) Atoms labella (d) Atoms labella	d-block elements, atoms (Sc to Cu) is blue in colour name of K_2NiCl_4 s is/are correct re $H = \frac{H}{L}$ $H = \frac{C}{C_p}$ H ed P, Q, R and S ed Q, R, S and T ed R, S, T, U and ed R, S, T and U (g), 0.10 moles of uner and allowed $H_2(g) \rightleftharpoons 2NH_3(g)$ llowing statement/ um? Q_C is the rea K_C ; NH ₃ (g) starts	Sc is not consid decrease from key whereas [Zn(NH is dipotassium to garding the follow $O_Q = C_R = C_S = C_T = C$	ered as a transition eff to right. $_{3})_{4}]^{2+}$ is colourless trachloronickelate wing molecule? D_{U} fine. t line. t line. t line. moles of NH ₃ (g) w um at 500 K as a 0^{2} mol ⁻² dm ⁶ or the changes in 0 and H ₂ (g) and the	d-block elements and their on element. (II). (II). were inserted into a 1.0 dm ³ given below. the system from the initial e system reaches equilibrium
32.	compounds? (a) Among the 3 (b) The radii of (c) $[Ni(NH_3)_6]^{2+}$ (d) The IUPAC 1 Which statement/ (a) Atoms labella (b) Atoms labella (c) Atoms labella (d) Atoms labella	d-block elements, atoms (Sc to Cu) is blue in colour name of $K_2 NiCl_4$ s is/are correct re H $H - C_{P}$ H ed P, Q, R and S ed Q, R, S and T ed R, S, T, U and ed R, S, T, U and ed R, S, T and U (g), 0.10 moles of uner and allowed $H_2(g) \rightleftharpoons 2NH_3(g)$ llowing statement/ um? Q_C is the rea K_C ; NH ₃ (g) starts K_C ; NH ₃ (g) starts	Sc is not consid decrease from 16 whereas [Zn(NH is dipotassium to garding the follow $O_Q - C_R = C_S - C_T = C_1 + C_2 + C_$	ered as a transition eff to right. $_{3})_{4}]^{2+}$ is colourless etrachloronickelate wing molecule? D_{U} t line. t line. t line. t line. t line. moles of NH ₃ (g) with um at 500 K as produced 0^{2} mol ⁻² dm ⁶ for the changes in 0 and H ₂ (g) and the 0 and H ₂ (g) and the	d-block elements and their on element. (II). were inserted into a 1.0 dm ³ given below. the system from the initial e system reaches equilibrium
32.	compounds? (a) Among the 3 (b) The radii of (c) $[Ni(NH_3)_6]^{2+}$ (d) The IUPAC 1 Which statement/ (a) Atoms labelle (b) Atoms labelle (c) Atoms labelle (c) Atoms labelle (d) Atoms labelle (d) Atoms labelle 0.01 moles of N ₂ rigid-closed conta N ₂ (g) + 3 Which of the following stage to equilibrit (a) Initially $Q_C <$ (b) Initially $Q_C <$	d-block elements, atoms (Sc to Cu) is blue in colour name of $K_2 NiCl_4$ s is/are correct re $H = \frac{1}{P}$ H ed P, Q, R and S ed Q, R, S and T ed R, S, T, U and ed R, S, T and U (g), 0.10 moles of uiner and allowed $H_2(g) \rightleftharpoons 2NH_3(g)$ llowing statement/ um? Q_C is the rea K_C ; $NH_3(g)$ starts K_C ; $NH_3(g)$ starts c K_C ; $NH_3(g)$ and H	Sc is not consid decrease from key whereas [Zn(NH is dipotassium to garding the follow $O_Q - C_R = C_S - C_T = (M_V)$ lie on a straight lie on a straight d V lie on the sa l lie on a straight f H ₂ (g) and 0.40 to reach equilibri $K_C = 2.0 \times 1$ s is/are correct for action quotient. s to produce N ₂ (g) s to produce N ₂ (g) s to produce N ₂ (g)	ered as a transition eff to right. $_{3}^{2+}$ is colourless trachloronickelate wing molecule? U line. t line. t line. t line. moles of NH ₃ (g) w um at 500 K as a 0^2 mol ⁻² dm ⁶ or the changes in and H ₂ (g) and the and H ₂ (g) and the	d-block elements and their on element. (II). (II). were inserted into a 1.0 dm ³ given below. the system from the initial e system reaches equilibrium

	ne stand en
34.	Which of the following statement/s regarding the reaction between compound P and HCl to form an alkyl halide is/are correct? $CH_3CH=C$ CH_3
	(a) The major product is 2-chloro-2-methylbūtane.
	 (b) A secondary carbocation is formed as an intermediate in this reaction. (c) In one of the steps of the reaction, the HCl bond is cleaved to give a chlorine radical (Cl[*]). (d) In one of the steps of the reaction, a nucleophile reacts with a carbocation.
35.	A binary liquid mixture prepared by mixing two liquids in a closed evacuated container at a given temperature shows a negative deviation from Roult's Law. Which of the following statement/s is/are correct for this system?
	(a) Total vapour pressure of the mixture is less than the expected total vapour pressure should it behave as an ideal mixture.
	 (b) Heat is released when the mixture is formed. (c) Number of molecules in the vapour phase of the mixture is greater than the expected number of molecules should it behave as an ideal mixture. (d) Heat is absorbed when the mixture is formed.
36.	Which of the following statement/s is/are correct with regard to CFC, HCFC and HFC?(a) Both classes of compounds CFC and HCFC have the ability to produce chlorine free radicals in the upper atmosphere (stratosphere).
	(b) Both classes of compounds HFC and HCFC have the ability to produce chlorine free radicals in the upper atmosphere (stratosphere).
	 (c) All three classes of compounds CFC, HCFC and HFC are strong greenhouse gases. (d) All three classes of compounds CFC, HCFC and HFC contribute significantly to ozone layer depletion.
37.	Which of the following statement/s is/are correct with regard to halogens, noble gases and their compounds?
	 (a) Hypochlorous ion disproportionates rapidly in acidic solutions. (b) Xe forms a series of compounds with F₂ gas, among which XeF₄ has a square planar geometry. (c) Among the hydrogen halides, HF has the highest bond dissociation energy per mole. (d) Boiling points of halogens increase down the group as a result of increasing strength of London forces.
38.	Which of the following statement/s is/are correct regarding the Daniell cell when it operates at room temperature? ($E_{cell}^{\circ} = +1.10 \text{ V}$)
	 (a) Net electron flow occurs from Zn to Cu. (b) The equilibrium Zn²⁺(aq) + 2e ⇒ Zn(s) shifts to the right. (c) A liquid-junction potential is created due to the presence of a salt-bridge. (d) The equilibrium Cu²⁺(aq) + 2e ⇒ Cu(s) shifts to the right.
39.	 Which of the following statement/s is/are correct for ideal gases and real gases at constant temperature? (a) At very high pressures, the volume of a real gas is higher than that of an ideal gas. (b) At high pressures, real gases tend to behave as ideal gases. (c) At very high pressures, the volume of a real gas is lower than that of an ideal gas. (d) At low pressures, real gases tend to behave as ideal gases.
40.	Which of the following statement/s is/are correct regarding some industrial processes? (a) The first two steps involved in the manufacture of Na ₂ CO ₃ by Solvay Process are endothermic
	(b) The presence of Mg^{2+} , Ca^{2+} and SO_4^{2-} ions in brine, hinders the production of NaOH using the membrane cell method.
	 (c) The first step involved in the manufacture of nitric acid by Ostwald method is the oxidation of NH₃ gas using O₂ in air in the presence of a catalyst to give NO₂ gas. (d) High temperature and low pressure conditions are employed in the manufacture of NH₃ gas
	using Haber-Bosh process.

[See nave eight

AL/2020/02/E-I(NEW)

In question Nos. 41 to 50, two statements are given in respect of each question.
 From the Table given below, select the response, out of the responses (1), (2), (3), (4) and (5), that best fits the two statements and mark appropriately on your answer sheet.

- 8 -

Response	First Statement	Second Statement
(1)	True	True, and correctly explains the first statement
(2)	True	True, but does not explain the first statement correctly
(3)	True	False and the second
(4)	False	True water care a construction state of the science of the
(5)	False	False

First Statement	Second statement
Among the oxides of Cr and Mn, CrO and MnC are acidic, while CrO_3 and Mn_2O_7 are basic.	The acidic/basic nature of the oxides of C and Mn is dependant on the oxidation number of the metal.
An acidic buffer solution can be prepared by mixing a weak acid HA(aq) with its sodium salt NaA(aq).	
Essential oils can be extracted from plants by steam distillation at a temperature below 100 °C	At the temperature at which a mixture of essentia oil and water boils, the total vapour pressure o the system is less than the atmospheric pressure
At a given temperature and pressure the mola volumes of two different ideal gases are different from each other.	At 0 °C temperature and 1 atm pressure, the mola t volume of an ideal gas is 22.4 dm ³ mol ⁻¹ .
All compounds having a C=C bond show diastereoisomerism.	Any two isomers which are not mirror image of each other are diastereoisomers.
Hydrogenation of benzene is more difficult that hydrogenation of alkenes.	Addition of hydrogen to benzene results in the loss of aromatic stabilization.
The reaction that takes place between SO_3 ga and water in the production of sulphuric acid is endothermic.	s SO_3 gas reacts with concentrated H_2SO_4 to giv to oleum.
gives a mixture of primary, secondary and tertiar	e Primary, secondary and tertiary amines can read as nucleophiles.
If $P+Q \rightarrow R$ is a first order reaction with respect to the reactant P, the graph of rat against concentration of P gives a straight line passing through the origin.	n Initial rate of a first order reaction is independen e of the concentration of reactant(s).
On a sunny day, strong photochemical smog ca be seen in a city with heavy traffic congestion	n Photochemical smog is caused entirely b scattering of solar radiation by small particle and water droplets that are emitted by vehicle

TSee nave nine

ශී ලංකා විභාග දෙපාර්තමේන්තුව

Department of Examinations – Sri Lanka

අ.පො.ස.(උ.පෙළ)විභාගය/G.C.E. (A/L)- 2020

නව නිර්දේශය/ New Syllabus

විෂයය අංකය Subject No

02

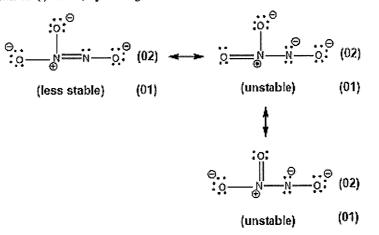
විෂයය Subject

Chemistry

ලකුණු දීමේ පට්පාට්ය/Marking Scheme

	r			ger - up				[
පුශ්න අංකය Question No.	පිළිතුරු අංකය Answer No.								
01.	5	11.	2	21.	3	31.	5	41.	4
02.	3	12.	3	22.	<u>4 or 5</u> .	32.	2	42.	<u>1 or 2</u>
03.	4	13.	3	23.	1	33.	5	43.	3
04.	2	14.	2	24.	<u>ALL</u>	34.	4 or 5	44.	4
05.	ALL	15.	ALL	25.	ALL	35.	1	45.	5
06.	1	16.	3	26.	1	36.	5	46.	1
07.	2	17.	1	27.	5	37.	3 or 5	47.	4
08.	3	18.	1	28.	5	38.	4	48.	
09.	4	19.	2	29.	4	39.	4	49.	3
10.	2	20.	2	30.	2	40.	5	50.	3

I පතුය/Paper I


ට්ටිශේෂ උපදෙස්/ Special Instructions: චක් පිළිතුරකට ලකුණු 01 බැගින්/ 01 Mark for each question මුළු ලකුණු/ Total Marks 01 × 50 = 50 0-

:0^{.0}

			PART A – STRUCTURED ESSAY Answer all four questions on this paper itself. (Each question carries 1	0 marks.)
1.	(a)	Writ	e the answers to the questions given below on the dotted lines.	antha dh'an ta' an t
			Of the three ions Na^+ , Mg^{2+} and F^- , which one has the smallest ionic radius?	Mg²+
		(ii)	Of the three elements C,N and O, which one has the highest second ionization energy?	0
		(iii)	Of the three compounds H_2O , HOCl and OF_2 , which one has the most electronegative oxygen atom?	OF₂
		(iv)	Of the three elements Be, C and N, which one will liberate energy when an electron is added to its atom $[Y(g) + e \rightarrow Y^{-}(g); Y = Be, C, N]$ in the gaseous state?	C
		(v)	Of the three ionic compounds NaF, KF and KBr, which one has the highest solubility in water?	KF or KBr
		(vi)	Of the three compounds HCHO, CH_3F and H_2O_2 , which one has the strongest intermolecular forces?	<u>H2O2</u>
				(04 marks X 6 = 24)
				1(a): 24 marks
	(b)	(i)	Draw the most acceptable Lewis structure for the ion, $N_2O_3^{2-}$. It below.	s skeleton is given
			~	

(ii) Draw three more Lewis structures (resonance structures) for this ion. Indicate the relative stabilities of the structures drawn by you, when compared with the most acceptable structure drawn in (i) above, by writing 'less stable' or 'unstable' under these structures.

(iii) Complete the given table based on the Lewis structure and its labelled skeleton given below.

Ŷ

;ci—ni—ii—c≡=n	$CI \longrightarrow N^2 \longrightarrow O^3 \longrightarrow C^4 \longrightarrow N$					
-	N ¹	N ²	O ³	C ⁴		
VSEPR pairs around the atom	3	3	4	2		
electron pair geometry around the atom	trigonal planar	trigonal planar	tetrahedral	linear		
shape around the atom	trigonal planar	angular/ V	angular/ V	linear		
hybridization of the atom	sp ²	sp ²	sp ³	sp		

$(01 \times 16 = 16)$

- Parts (iv) to (vii) are based on the Lewis structure given in part (iii) above. Labelling of atoms is as in part (iii).
 - (iv) Identify the atomic/hybrid orbitals involved in the formation of σ bonds between the two atoms given below.

	Cl $3p$ OR sp^3		
II. N ¹ —O	N^1 sp ²	$\begin{array}{c} 2p \text{ OR } sp^3 \\ 0 \end{array}$	
III. $N^1 - N^2$	$N^1 \dots sp^2$	N^2	
IV. $N^2 - O^3$	N ² <i>sp</i> ²	O ³ <i>sp</i> ³	
V. $O^{3}-C^{4}$	O ³ <i>sp</i> ³	C ⁴ \$P	
VI. C^4 —N	C ⁴ sp	N 2p OR sp	(01 X 12 = 12)

(v) Identify the atomic orbitals involved in the formation of π bonds between the two atoms given below

$I. N^{I} - N^{2}$	N ¹ , 2 <i>p</i>	N ² , 2p	
II. C ⁴ —N	C^4	N, 2p	
	C ⁴ C ⁴ , 2p	NN, 2p	(01 X 6 = 06)

(vi) State the approximate bond angles around N^1 , N^2 , O^3 and C^4 atoms.

 $N^{1}...120^{\circ} \pm 1, 1 N^{2}...115^{\circ} - 118^{\circ} O^{3}...104^{\circ} \pm 1, C^{4}...180^{\circ} \pm 1$

(01 X 4 = 04)

1(b): 56 marks

(vii) Arrange the atoms N^1 , N^2 , O^3 and C^4 in the increasing order of electronegativity.

$$\dots C^4 \dots < \dots N^2 \dots < \dots N^1 \dots < \dots O^3 \dots$$
 (03)

- I. The atoms A and B combine to form a heterodiatomic molecule AB that has a σ bond. This is represented as A-B.
- II. The electronegativity of A is less than that of B $(X_A < X_B)$. X = electronegativity of the atom
- III. The inter-nuclear distance between A and B atoms (d_{A-B}) of the AB molecule is given by the following equation.

 $\mathbf{d}_{\mathbf{A}-\mathbf{B}} = \mathbf{r}_{\mathbf{A}} + \mathbf{r}_{\mathbf{B}} - \mathbf{c}(\mathbf{X}_{\mathbf{B}} - \mathbf{X}_{\mathbf{A}})$

$$r = atomic radius, c = 9 pm$$

Note: d and r are measured in picometres (pm). $(1 \text{ pm} = 10^{-12} \text{ m})$

Based on the above information, answer the following questions.

- (i) What is the name used to identify the type of σ bond between A and B?
 Polar covalent bond (03)
 (ii) Show how fractional charges (δ+ and δ-) are located in the molecule AB.
 A^{δ+}— B^{δ-} (03)
 - (iii) Write the equation to calculate the dipole moment (μ) of molecule AB and show its direction.

 $\mu = d_{AB} \times \delta$, OR $\mu = qr$, A B OR A B (01 + 01)

 $\mu = \mathbf{d}_{\mathsf{HF}} \mathbf{x} \, \delta, \quad \mathsf{H}^{\delta +} - \mathsf{F}^{\delta -}$

(iv) Calculate the percentage of ionic character of the H-F bond in the HF molecule using the data given below.

Inter-nuclear distance of $H_2(d_{H-H}) = 74 \text{ pm}$ Electronegativity of F = 4.0Inter-nuclear distance of $F_2(d_{F-F}) = 144 \text{ pm}$ Dipole moment of $HF = 6.0 \times 10^{-30} \text{ C m}$ Electronegativity of H= 2.1Charge of an electron $= 1.6 \times 10^{-19} \text{ C}$

$$r_{\rm H} = \frac{d_{\rm H2}}{2} = \frac{74}{2} = 37 \, {\rm pm}$$
 (02)
 $r_{\rm F} = \frac{d_{\rm F2}}{2} = \frac{144}{2} = 72 \, {\rm pm}$ (02)

$$\mu = d_{HF} \times \delta$$
, 6.0 × 10⁻³⁰ Cm = δ × 91.9 × 10⁻¹² m (01)

$$\delta = \frac{6.0 \times 10^{-30}}{91.9 \times 10^{-12}} = 0.65 \times 10^{-19}$$
(02)
% lonic character = $0.65 \times 10^{-19} \times 100$ (01)

$$\frac{0.65 \times 10^{10}}{1.6 \times 10^{-19}} = 40.6\%$$
(01)

OR

 $r_{\rm H} = \frac{d_{\rm H2}}{2} = \frac{74}{2} = 37 \, {\rm pm}$ (02)

$$\mathbf{r}_{\rm F} = \frac{d_{\rm F2}}{2} = \frac{144}{2} = 72 \, {\rm pm}$$
 (02)

Therefore,
$$d_{HF} = 37 + 72 - 9(4.0 - 2.1)$$
 (01)
= 109 - 9 x 1.9

$$= 91.9 \text{ pm}$$
(02)

$$\mu_{\text{ionic}} = 1.6 \times 10^{-30} \text{ C } \times 91.9 \times 10^{-2} \text{ m}$$

$$= 147.04 \times 10^{-31} \text{ C m}$$
% lonic character = $6 \times 10^{-30} \times 100$ (01)

$$\frac{147.04 \times 10^{-31}}{147.04 \times 10^{-31}}$$
= 40.8% (01

2. (a) A, B, C and D are chlorides of p-block elements. These elements have atomic numbers less than 20. A description of the products $(P_1 - P_9)$ formed when A is reacted with a limited amount of water and B, C and D are reacted with excess water are given below.

	Compound	Description of products					
	A 11.14	P ₁ a compound with a covalent network structure P ₂ a strong monobasic acid					
	$\mathbf{B} \qquad \begin{array}{c} \mathbf{P_3} \\ \mathbf{P_4} \\ \mathbf{P_4} \end{array} a compound with bleaching properties \end{array}$						
	С	P5 a tribasic acid P6 a strong monobasic acid					
	D	P7 a gas that turns acidic KMnO4 solution colourless P8 a colloidal solid P9 a strong monobasic acid					

(i) Identify A, B, C and D (give the chemical formulae).

A: SiCl₄ B: NCl₃ C PCl₅ D, SCl₂ (04 x 4)

(ii) Give balanced chemical equations for the reactions of A, B, C and D with water to give products P_1 to P_9 . SiCl₄ + 2H₂O \rightarrow SiO₂ (P₁) + 4HCl (P₂) (05)

$$NCl_3 + 3H_2O \rightarrow NH_3$$
 (P₃) + 3HOCl (P₄) (05)

$$PCI_{5} + 4H_{2}O \rightarrow H_{3}PO_{4} (P_{5}) + 5HCI (P_{6})$$

$$(05)$$

$$2SCI_{2} + 2H_{2}O \rightarrow SO_{2} (P_{7}) + S \qquad (P_{8}) + 4HCI (P_{9})$$

$$(05)$$

Note: Award marks if correct balanced equations are given.

(iii) Write balanced chemical equations for the following reactions.

I. P_1 with NaOH(aq) SiO ₂ + 2NaOH $\rightarrow \Rightarrow$	Na2SiO3 + H2O	(0
II. $\mathbf{P_3}$ with Mg 3Mg + 2NH ₃ \rightarrow	Mg3N2 + 3H2	(0
II. \mathbf{P}_7 with acidic $K_2 Cr_2 O_7$ 3(SO ₂ + 2H ₂ O \rightarrow	SO4 ²⁻ + 4H ⁺ + 2e)	
Cr_2O7^{2-} + 14H ⁺ +6e \rightarrow	2Cr ³⁺ + 7H ₂ O	
$3SO_2 + Cr_2O_7^{2-} + 2H^+ \rightarrow$	$2Cr^{3+} + 3SO_4^{2-} + H_2O$	(06

(b) A student is provided with bottles labelled P, Q, R, S, T and U containing aqueous solutions of Al₂(SO₄)₃, H₂SO₄, Na₂S₂O₃, BaCl₂, Pb(Ac)₂ and KOH (not in order). Some useful observations for their identification on mixing two solutions at a time are given below. (Ac - Acetate ion)

n an star Chinadh		Solutions mixed	Observations
30 en	I	T+R	a clear colourless solution
	II	P+R	a white precipitate
	III	T + S	a gelatinous white precipitate
	IV	U + R	a white precipitate
	V	P + Q	a white precipitate, turns black on heating
	VI	P+U	a white precipitate, dissolves on heating

(i) Identify P to U.S. and the P is the

 $\begin{array}{c} \mathbf{p}: \underline{\mathsf{Pb}}(\mathsf{Ac})_2 \\ \mathbf{s}: \underline{\mathsf{Al}}_2(\mathrm{SO4})_3 \ \mathbf{OR} \ \mathsf{KOH} \\ \mathbf{T}: \ \underline{\mathsf{KOH}} \ \mathbf{OR} \ \underline{\mathsf{Al}}_2(\mathrm{SO4})_3 \\ \mathbf{U}: \underline{\mathsf{BaCl}}_2 \\ \mathbf{U}: \underline{\mathsf{BaCl}}_2 \\ \mathbf{U}: \underline{\mathsf{BaCl}}_2 \\ \mathbf{U}: \underline{\mathsf{Al}}_2(\mathrm{SO4})_3 \\ \mathbf{U}: \underline{\mathsf{BaCl}}_2 \\ \mathbf{U}: \underline{\mathsf{Al}}_2(\mathrm{SO4})_3 \\ \mathbf{U}: \underline{\mathsf{BaCl}}_2 \\ \mathbf{U}: \underline{\mathsf{Al}}_2(\mathrm{SO4})_3 \\ \mathbf{U}: \mathbf{U}: \underline{\mathsf{Al}}_2(\mathrm{SO4})_3 \\ \mathbf{U}: \mathbf$

(ii) Give balanced chemical equations for each of the reactions I to VI.

1997年1月1日,王王帝王是一次明确的说法,是他的问题,他们还是他们还是他的事件的,是是一个人们,是是一个人们,不是一个人,不是是王王帝王,他们不是一个人,不	
I. 2KOH + H ₂ SO ₄ \rightarrow K ₂ SO ₄ + 2H ₂ O OR	(03)
$Al_2(SO_4)_3$ + H_2SO_4 \rightarrow No reaction	
II. $Pb(Ac)_2$ + $H_2SO_4 \rightarrow PbSO_4 \downarrow$ + 2HAc	(03)
III. 6KOH + $Al_2(SO_4)_3 \rightarrow 2Al(OH)_3 \downarrow + 3K_2SO_4$	(03)
IV. $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$	(03)
	(00)
V. Formation of white ppt	
$Pb(Ac)_{2} + Na_{2}S_{2}O_{3} \rightarrow PbS_{2}O_{3} \downarrow + 2NaAc$	(03)
Turning black on heating	
	(02)
$PbS_2O_3 + H_2O \rightarrow PbS \downarrow + H_2SO_4$	(02)
VI. $Pb(Ac)_2$ + $BaCl_2 \rightarrow PbCl_2 \downarrow$ + $Ba(Ac)_2$	(03)
	()

Note: Precipitates have to be shown by \downarrow or as (s). If not, deduct (01) mark.

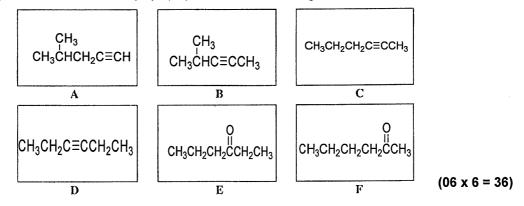
2(b): 50 marks

3. (a) A saturated aqueous solution of a sparingly soluble salt AB₂(s) was prepared by stirring an excess amount of AB₂(s) in 1.0 dm³ of distilled water at 25 °C. The amount of A²⁺(aq) ions present in this saturated aqueous solution was found to be 2.0 × 10⁻³ mol.
(i) Write the equilibrium related to the dissolution of AB₂(s) in the above system at 25 °C. AB₂(s) ≓ A²⁺(aq) + 2B⁻(aq) (05)
(ii) Write the expression for the equilibrium constant for the equilibrium written in (i) above at 25 °C.

 $K_{sp} = [A^{2+}(aq)][B^{-}(aq)]^{2}$ $\frac{K_{C}}{[A^{2+}(aq)][B^{-}(aq)]^{2}}{[AB_{2}(s)]}$

Note: If only Kc is given award (03 marks)

(05)

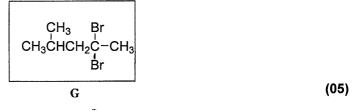

(iii) Calculate the value of the equilibrium constant stated in (ii) above at 25 °C.

1	$[A^{2+}(aq)] = 2.0 \times 10^{-10}$)-3m a1 dm-3				(04.1.01)
	$[B^{-}(aq)] = 2[A^{2+}(a$		mol dm ⁻³			(04+01) (04+01)
ŀ		(04:01)				
	(05)					
	$X_{sp} = 3.2 \times 10^{-8} \text{mol}^3$) Another saturated of AB ₂ (s) in 2.00 the equilibrium co	aqueous soluti fm ³ of distilled onstant for this	water at 25° system.	C. Giving re	asons, predict	the value of
ν	$-2.2 \times 10^{-8} \text{ mol}^{-3}$	dm-9				(05)
	$f_{sp} = 3.2 \times 10^{-8} \text{ mol}^3$ f_{sp} is a constant at con		·0			(05) (05)
	nd does not depends	-				(05)
	A small amount of of AB_2 at 25 °C. Gi or decreased.	the strong election				s solution
	Common-ion B ⁻ (aq)) is added	· · · · · · · · · · · · · · · · · · ·			(05)
	\therefore More AB ₂ (s) is 1		the K _m constr	int or reverse	e reaction take	• •
	$[A^{2+}(aq)], decre$	-	the map const			(05) (05)
						3(a): 60 marks
(<i>b</i>) In an	aqueous solution, pro	opanoic acid (C.	H _s COOH) ioniz	es as given b		
	C ₂ H ₅ COOH(aq) +				در به در این از این میکند میکند و این از ا	
(i)	At 25 °C, K_a (pro- Write the expression			for the abov	e reaction at 2	 5 °C. ™ statist
i	$K_a = \frac{[C_2 H_5 COO^-(aq)]}{[C_2 H_5 COO]}$)][H ₃ O ⁺ (aq)] H (aq)]				(05)
(ii)	100.0 cm ³ of an $a_{0.74}$ cm ³ of C ₂ H ₅ CO (C = 12; O = 16; H mass of C ₂ H ₅ COOF	OH in distilled $v = 1$; consider the	vater at 25 °C. Ca density of C ₂ H ₅	lculate the pH COOH as 1.0 p	of the solution a	
	moles of C ₂ H ₅ COC	0H(aq) in 100 ci	$n^3 = 0.74 g/74 g$	$g \text{ mol}^{-1} = 0.01$	mol	(05)
	∴ [C ₂ H₅COOH(aq)] = 0.10 mol c	lm ⁻³			(05)
	Consider the equilib	orium:				
	C ₂ H ₅ COOH(aq) +]	$H_2O(l) \rightleftharpoons C_2H_5C$	200 ⁻ (aq) + H ₃ O ⁻	(aq)		
	Initial	0.10	0	0	mol dm ⁻³	
	Change	- <i>x</i>	x	x	mol dm ⁻³	
	At eqm	0.10 - x	x	x	mol dm ⁻³	(05)
	$K_a = \frac{[C_2 H_5 COO^-(a)]}{[C_2 H_5 COO^-(a)]}$	$\frac{[q][H_3O^+(aq)]}{[H_1O^+(aq)]} = \frac{1}{2}$	$\frac{x.x}{0.10-x} = 1.0 \times 1$	0 ⁻⁵		(02)
	$\frac{x^2}{0.10} = 1.0 \times 10^{-5}$ $x^2 = 1.0 \times 10^{-6}$	$(0.10 - x \sim 0.1)$.)			(03)
	$x = 1.0 \times 10^{-3} m$	nol $dm^{-3} = H_{2}$	3O ⁺ (aq)]			(05)
	$pH = -log /H_3O^+(a)$	$(q) = 1.0 \times 10^{-3}$				(05)
	pH = 3.0					(05)
N	lote : Students may	take –log of bot	h sides of $K_a =$	$\frac{[C_2H_5C00^-(a_1)]}{[C_2H_5C00^-(a_2)]}$	$\frac{[H_{3}O^{+}(aq)]}{[H_{4}O^{+}(aq)]}$ and	l calculate pH.
А	ward marks approp	priately.			Г	3(b): 40 marks

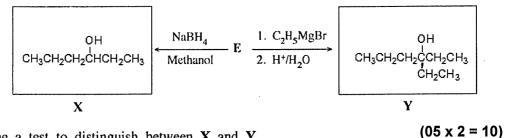
02 - Chemistry (Marking Scheme) New Syllabus | G.C.E. (A/L) Examination 2020 | Amendments to be included. .

Only A gives a precipitate with ammonical AgNO3. A has only one position isomer, which is B. B is a chain isomer of C. C reacts with HgSO₄/dil. H₂SO₄ to give two products E and F. D reacts with HgSO₄/dil. H₂SO₄ to give only one product, which is E.

(i) Draw the structures of A, B, C, D, E and F in the boxes given below.



(ii) Which of the compounds A, B, C and D gives a product that does not show diastereoisomerism when reacted separately with H2 / Pd-BaSO4 / quinoline?


$$CH_3$$

 $CH_3CHCH_2C\equiv CH$ (05)

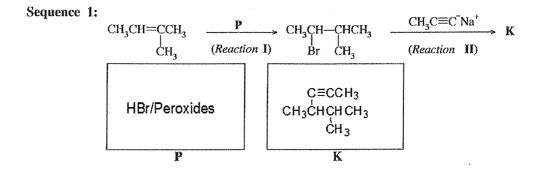
or Appropriate letter (A, B, C or D) identifying the correct structure

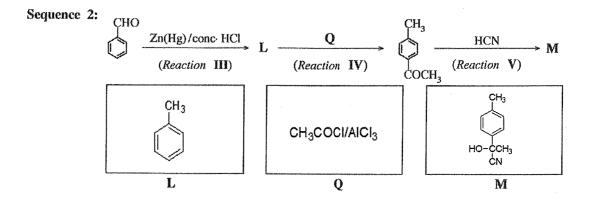
(iii) Draw, in the box given below, the structure of the product G obtained when A is reacted with excess HBr.

(iv) Draw the structures of products X and Y obtained in the following reactions of E, in the appropriate boxes.

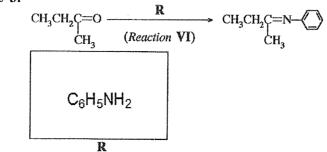
Name a test to distinguish between X and Y.

Lucas test or


anh. ZnCl₂ / conc. HCl or


H⁺/K₂Cr₂O₇ or

H⁺/KMnO₄


18

4(a): 60 marks

Compounds/reagents (05 x 6 = 30)

(ii) Selecting from the reactions I - VI, give one (01) example for each of the following types of reactions.

Nucleophilic addition	Reaction V	
Nucleophilic substitution	Reaction II	
		Rea

Reactions $(05 \times 2 = 10)$

4(b): 40 marks

5. (a) A compound $XY_2Z_2(g)$ undergoes dissociation when heated to temperatures above 300 K as given below.

$$XY_2Z_2(g) \rightleftharpoons XY_2(g) + Z_2(g)$$

A sample of 7.5 g of $XY_2Z_2(g)$ was placed in an evacuated 1.00 dm³ rigid-closed container and the temperature was raised to 480 K.

Molar mass of $XY_2Z_2(g)$ is 150 g mol⁻¹. Use the approximate value of 4000 J mol⁻¹ for RT at 480 K. Assume ideal gas behaviour for all gases.

(i) Calculate the number of moles of $XY_2Z_2(g)$ in the container before dissociation.

$$7.5 \text{ g}/150 \text{ g mol}^{-1} = 5.0 \times 10^{-2} \text{ mol}$$
 (05)

5(a) (i): 05 marks

(ii) When the above system reaches equilibrium at 480 K, the total number of moles in the container was found to be 7.5×10^{-2} mol. Calculate the number of moles of $XY_2Z_2(g)$, $XY_2(g)$ and $Z_2(g)$ in the equilibrium mixture at 480 K.

$$\begin{array}{rcl} XY_2Z_2(g) &\rightleftharpoons & XY_2(g) &+ & Z_2(g) \\ Initial & 0.05 & 0 & 0 & mol \, dm^{-3} \end{array} \tag{05}$$

$$Change & -x & x & x & mol \, dm^{-3} \end{array}$$

At eqm 0.05-x x x mol dm⁻³ (05)

Total number of moles = $0.05 + x = 7.5 \times 10^{-2} \text{ mol}$ (05)

$$x = 2.5 \times 10^{-2} \,\mathrm{mol} \tag{05}$$

$$XY_2(g) = Z_2(g) = 2.5 \times 10^{-2} \text{ mol}$$
 (05)

$$XY_2Z_2(g) = 5.0 \times 10^{-2} \text{ mol} - 2.5 \times 10^{-2} \text{ mol} = 2.5 \times 10^{-2} \text{ mol}$$
(05)

5(a) (ii): 30 marks

(iii) Calculate the equilibrium constant K_c for the above reaction at 480 K.

$$K_{c} = \frac{[XY_{2}(g)][Z_{2}(g)]}{[XY_{2}Z_{2}(g)]}$$
(05)

$$Concentration = 2.5 \times 10^{-2} \, mol \, dm^{-3} \tag{05}$$

$$K_c = \frac{2.5 \times 10^{-2} \, mol \, dm^{-3} \times 2.5 \times 10^{-2} \, mol \, dm^{-3}}{2.5 \times 10^{-2} \, mol \, dm^{-3}} \tag{05}$$

$$K_c = 2.5 \times 10^{-2} \, mol \, dm^{-3} \tag{05}$$

5(a) (iii): 20 marks

(iv) Calculate K_p for the equilibrium at 480 K.

$$K_p = K_c (RT)^{\Delta n} \tag{05}$$

$$\Delta n = 1 \tag{05}$$

$$K_p = 2.5 \times 10^{-2} \, mol \, dm^{-3} \times 4 \times 10^3 \, J \, mol^{-1} \tag{05}$$

 $K_p = 1.0 \times 10^5 \ Pa \tag{05}$

I

iv. Alternative: Total number of moles at equilibrium = 7.5×10^{-2} mol P_{Total} = $(7.5 \times 10^{-2} \text{ mol} \times 4 \times 10^{3} \text{ J mol}^{-1})/1.0 \times 10^{-3} \text{ m}^{3}) = 3.0 \times 10^{5} \text{ Pa})$ Number of moles of XY₂ Z₂(g) = XY₂(g) = Z₂(g) = 2.5 × 10^{-2} mol Mole fractions of XY₂ Z₂(g) = XY₂(g) = Z₂(g) = 1/3 P_i = X_i P_{total} P_{XY2} Z₂(g) = P_{XY2}(g) = P_{Z2}(g) = 1.0 × 10⁵ Pa K_p = [P_{XY2}(g) = P_{Z2}(g)] / P_{XY2} Z₂(g) = **1.0** × 10⁵ Pa

5(a): 75 marks

(b) For the reaction XY₂Z₂(g) → XY₂(g) + Z₂(g) described in (a), Gibbs free energies (G) at 480 K for XY₂Z₂(g), XY₂(g) and Z₂(g) are -60 kJ mol⁻¹, -76 kJ mol⁻¹ and -30 kJ mol⁻¹, respectively.

(i) Calculate ΔG (in kJ mol⁻¹) for the reaction at 480 K.

 $XY_2Z_2(g) \rightarrow XY_2(g) + Z_2(g)$

$$\Delta G_{rxn} = G_{products} - G_{reactants}$$
(05)
= (-76 + (-30)) - (-60) = -46 kJ mol⁻¹ (04+01)

Note: No marks if ΔG_{rxn}^0 is written.

5(b) (i): 10 marks

(ii) The magnitude of ΔS of the above reaction is 150 J K⁻¹ mol⁻¹ at 480 K. Calculate ΔH for the reaction at 480 K by using the appropriate sign (- or +) of ΔS .

 ΔS must be positive (number of gaseous moles is higher in products) (05)

5(b) (ii): 05 marks

(iii) By using the sign (- or +) of ΔH obtained in (ii), explain whether this reaction is exothermic or endothermic.

 $\Delta G = \Delta H - T \Delta S \tag{05}$

$$\begin{array}{l} -46 \ kJ \ mol^{-1} = \Delta H \ - \ 480 \ K \ \times \ 150 \ \times \ 10^{-3} \ kJ \ K^{-1} \ mol^{-1} \\ \Delta H = \ -46 \ kJ \ mol^{-1} \ + \ 72 \ kJ \ mol^{-1} \ & (04 \ + 01) \\ \Delta H = \ + \ 26 \ kJ \ mol^{-1} \ & (04 \ + 01) \\ 5(b) \ (iii): \ 15 \ marks \end{array}$$

(iv) Deduce the enthalpy difference for the formation of $XY_2Z_2(g)$ from $XY_2(g)$ and $Z_2(g)$ at 480 K.

The reaction is endothermic				
because ΔH is positive	(05)			
	5(b) (iv): 10 marks			

(v) If the bond enthalpy of the X-Z bond in $XY_2Z_2(g)$ is +250 kJ mol⁻¹, calculate the bond enthalpy of the Z-Z bond. (Assume that $XY_2Z_2(g)$ has the structure Z-X-Z) $AH = -26 kJ mol^{-1}$ (09+01)

5(b) (v): 10 marks

(vi) If liquid XY_2Z_2 is used instead of gaseous XY_2Z_2 , giving reasons, explain whether the value of ΔH obtained for the reaction $XY_2Z_2(l) \rightarrow XY_2(g) + Z_2(g)$ is equal to, or higher or lower than ΔH obtained in (ii).

$$\Delta H_{rxn} = \Delta H_{bonds \ formed} - \Delta H_{bonds \ broken} \tag{05}$$

$$\Delta H_{rxn} = \Delta H_{Z-Z} - 2 \Delta H_{X-Z}$$
(05)
26 kJ mol⁻¹ = $\Delta H_{Z-Z} - 2 \times 250 \text{ kJ mol}^{-1}$

$$\Delta H_{Z-Z} = 526 \ kJ \ mol^{-1} \tag{04+01}$$

(OR students may solve through an appropriate thermo cycle)

Higher	(05)
It is necessary to supply energy to convert liquid to gas first	(05)
(or $XY_2Z_2(l) \rightarrow XY_2Z_2(g)$ needs an extra energy)	

5(b) (vi): 25 marks

5(b): 75 marks

6. (a) Consider the reaction given below occurring in a closed container at a given temperature T. $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

(i) Write three expressions for the rate of reaction relevant to each of the compounds appearing in the reaction.

$$Rate = -\frac{\Delta[N_2O_5(g)]}{2\Delta t} = \frac{\Delta[NO_2(g)]}{4\Delta t} = \frac{\Delta[O_2(g)]}{\Delta t}$$
(05)
6(a) (i): 05 marks

- (ii) This reaction was carried out at temperature T with an initial concentration of 0.10 mol dm⁻³ of $N_2O_5(g)$. It was found that 40% of the initial amount was decomposed after a period of 400 s.
 - 1. Calculate the average rate of decomposition of $N_2O_5(g)$ in this time interval.

Decomposed amount = $0.10 \text{ mol } \text{dm}^{-3} \times 40/100 = 4.0 \times 10^{-2} \text{ mol } \text{dm}^{-3}$ (05)

Remaining concentration after $400 \text{ s} = 6.0 \times 10^{-2} \text{ mol dm}^{-3}$ (05)

Average Rate =
$$\frac{-(0.06 - 0.10) \mod dm^{-3}}{(400 - 0)s} = 1.0 \times 10^{-4} \mod dm^{-3} s^{-1}$$
 (05)

II. Calculate average rates of formation of $NO_2(g)$ and $O_2(g)$.

$$\frac{\Delta[N_2O_5(g)]}{2\,\Delta t} = \frac{\Delta[NO_2(g)]}{4\,\Delta t}$$

$$\frac{\Delta[NO_2(g)]}{4\,\Delta t} = 2.0 \times 10^{-4} \, mol \, dm^{-3} \, s^{-1}$$
(02)

$$\frac{\Delta[O_2(g)]}{\Delta t} = \frac{\Delta[N_2O_5(g)]}{2\,\Delta t} = 5.0 \times 10^{-5} \, mol \, dm^{-3} \, s^{-1} \tag{03}$$

6(a) (ii): 20 marks

(iii) In another experiment, initial rates were measured for this reaction at 300 K and the results are given below.

$[N_2O_5(g)] / mol dm^{-3}$	0.01	0.02	0.03
Initial rate / mol dm ⁻³ s ⁻¹	6.930 × 10 ^{−5}	1.386 × 10 ⁻⁴	2.079×10^{-4}

Derive the rate law for the reaction at 300 K.

When the concentration were increased two and three times, rate increased two and three times respectively. (05)

and three times, respectively.	(0.5)
Reaction is first order	(05)
$\therefore \text{ Rate law}: \text{Rate} = k [N_2 O_5(g)]$	(05)

(OR $R_1/R_2 = 1/2$ reaction is first order)

6(a) (iii): 15 marks

(iv) Another experiment was carried out at 300 K with an initial concentration of 0.64 mol dm⁻³ of $N_2O_5(g)$. It was found that the concentration of $N_2O_5(g)$ which remained after a period of 500 s was 2.0×10^{-2} mol dm⁻³.

I. Calculate the half-life $(t_{1/2})$ of the reaction at 300 K.	
Order of concentration change = $0.64/2.0 \times 10^{-2} = 32 = (2)^5$	(05)
\therefore Fraction of initial $N_2O_5(g) = (1/2)^5$	(05)
That is, 5 half-lives passed to reach this concentration	(05)
$\therefore t_{1/2} = 500 \text{ s/5} = 100 \text{ s}$	(05)

II. Calculate the rate constant of the reaction at 300 K.

OR	
$k = 6.93 \times 10^{-3} \text{ s}^{-1}$	(04+01)
Rate = $k [N_2O_5(g)] = 6.93 \times 10^{-5} \text{ mol } dm^{-3} \text{ s}^{-1} = k \ 0.01 \text{ mol } dm^{-3}$	(05)
from iii,	

(05)
(05)

6(a) (iv): 30 marks

(v) This reaction proceeds through a mechanism involving the following elementary steps.

Step 1	:	$N_2O_5(g)$	~~	NO ₃ (g)	+	NO ₂ (g)	: Fast
Step 2	:	NO ₃ (g)	+	NO ₂ (g)	→	2NO ₂ (g) +	O(g) : Slow
Step 3	:	$N_2O_5(g)$	+	O(g)	\rightarrow	2NO ₂ (g) +	O ₂ (g): Fast

Show that the above mechanism is consistent with the rate law of the reaction. (8.0 marks)

Step 1:	$N_2O_5(g)$	=	NO ₃ (g)	+	$NO_2(g);$			fast
Step 2:	NO ₃ (g)	+	NO ₂ (g)	\rightarrow	2NO ₂ (g)	+	O(g);	slow
Step 3:	$N_2O_5(g)$	+	O(g)	\rightarrow	2NO ₂ (g)	+	$O_2(g);$	fast

From step 2 (Slow-step);

Rate=
$$k[NO_3(g)] [NO_2(g)]$$
 (05)

For step 1 (equilibrium)

 $K_{eq} = \{ [NO_3(g)] [NO_2(g)] \} / [N_2O_5(g)]$ (05)

We get,
$$K_{eq} [N_2O_5(g)] = \{ [NO_3(g)] [NO_2(g)] \}$$

:: Rate= $k K_{eq} [N_2O_5(g)] = k [N_2O_5(g)]$ (05)

This is a first order reaction which follows the rate low derived (05)

6(a) (v): 20 marks

6(a): 90 marks

- (b) An ideal binary-liquid mixture was prepared by mixing two liquids of A and B in a closed evacuated container at temperature T. After establishing the equilibrium at temperature T, partial pressures of A and B in the vapour phase are P_A and P_B , respectively. At temperature T, the saturated vapour pressures of A and B are P_A° and P_B° , respectively. Mole fractions of A and B in solution are X_A and X_B , respectively.
 - (i) Show that $P_A = P_A^{\circ} X_A$ (Consider that the rates of vaporization and condensation are equal at equilibrium.)

Consider the above described vapor – liquid equilibrium of an ideal solution with components A and B. As the rate of evaporation equals the rate of condensation, we can write:

$$A_{(l)} \stackrel{r_{\nu}}{\underset{r_{c}}{\stackrel{} \rightleftharpoons}} A_{(g)} \dots \dots (1)$$
(05)

 r_v and r_c are the rates of vaporization and condensation, respectively of the component A. Considering (1), we can write;

$$r_{\nu} = k \left[A_{(l)} \right] = k_1 X_A \tag{05}$$

 X_A is the mole fraction of A in solution

Likewise,

$$r_{\nu}' = k' [A_{(g)}] = k_2 P_A$$
 (05)

 P_A is the partial pressure of A in vapor phase.

At equilibrium

$$r_{\nu} = r_{\nu}'$$

$$k_2 P_A = k_1 X_A \tag{05}$$

$$\therefore P_A = \frac{k_1}{k_2} X_A \text{ or } \therefore P_A = k X_A$$
(05)

when $X_A = 1$, $P_A = P_A^0 =$ saturated vapor pressure of A

$$\therefore \quad k = P_A^0 \tag{05}$$

$$\therefore P_A = P_A^0 X_A \tag{05}$$

6(b) (i): 35 marks

- (ii) In the above system at 300 K, the total pressure was 5.0×10^4 Pa. The saturated vapour pressures of pure A and B at 300 K, are 7.0×10^4 Pa and 3.0×10^4 Pa, respectively.
 - I. Calculate the mole fraction of A in the liquid phase of the equilibrium mixture.
 - II. Calculate the vapour pressure of A in the equilibrium mixture.

$$(I) P_{total} = P_A + P_B (05)$$

$$= X_{A}P^{0}{}_{A} + X_{B}P^{0}{}_{B} = X_{A}P^{0}{}_{A} + (1 - X_{B})P^{0}{}_{B}$$
(05)

$$\therefore X_A = \frac{P_{total} - P_B^0}{P_A^0 - P_B^0}$$
(05)

$$=\frac{5\times10^4-3\times10^4}{7\times10^4-3\times10^4} = \frac{1}{2}$$
(05)

(II)
$$\therefore P_A = P_A^0 X_A = \frac{1}{2} \times 7 \times 10^4 Pa = 3.5 \times 10^4 Pa$$
 (05)

6(b) (ii): 25 marks

6(b): 60 marks

7. (a) (i) To compare the properties of Electrolytic and Galvanic cells, copy and complete the following table using the given terms.

Terms: anode, cathode, positive, negative, spontaneous, non-spontaneous.

		Electrolytic cell	Galvanic cell
A.	Oxidation half reaction takes place at	Anode	Anode
В.	Reduction half reaction takes place at	Cathode	cathode
C.	Sign of E ⁰ cell	-ve	+ve
D.	Electron flow	From anode to cathode	From anode to cathode
Е.	Spontaneity of reaction	Non-spontaneous	spontaneous

$(2 \times 10 = 20 \text{ marks})$

7(a) (i): 20 marks

(ii) An electrochemical cell was constructed at 300 K by using a Zn(s) anode, an aqueous alkaline electrolyte and a porous Pt cathode which facilitates the collection of oxygen $O_2(g)$ from air as shown below. As the cell operates ZnO(s) is produced. You are given that

$E_{\text{ZnO(s)} \text{Zn(s)} \text{OH}^{-}(\text{aq})}^{\circ} = -1.31 \text{ V} \text{ and } E_{\text{O}_{2}(\text{g}) \text{OH}^{-}(\text{aq})}^{\circ} = +0.34 \text{ V}$	ſ		
Zn = 65 g mol ⁻¹ , O = 16 g mol ⁻¹ and 1 F = 96,500 C 1. Write the half-reactions occurring at anode and cathode. Anode		Electrolyte	e - - - - - - - - - - - - -

anode :
$$Zn(s) + 2 OH^{-}(aq) \rightarrow ZnO(s) + H_2O(l) + 2e$$
(05)

Cathode ; $O_2(g) + 2 H_2O(l) + 4e \rightarrow 4 OH(aq)$

II. Write the overall cell reaction.

$$2 \operatorname{Zn}(s) + O_2(g) \to 2 \operatorname{ZnO}(s) \tag{05}$$

III. Calculate the cell potential E_{cell}° at 300 K. $E_{cell}^{0} = E_{R}^{0} - E_{L}^{0} = E_{cathode}^{0} - E_{anode}^{0}$ (05)

$$= 0.34 \text{ V} - (-1.31 \text{ V}) = 1.65 \text{ V}$$
 (04+01)

IV. State the direction of migration of OH-(aq) ions between the electrodes.

From anode to cathode (from Zn electrode to oxygen electrode) (05)

(05)

V. When the cell operates for a period of 800 s at 300 K, 2 mol of O₂(g) are consumed.
 A. Calculate the number of moles of electrons passing through the cell.

$$2 \mod O_2(g) \times \frac{4 \mod ens}{1 \mod O_2(g)} = 8 \mod electrons$$
(05)

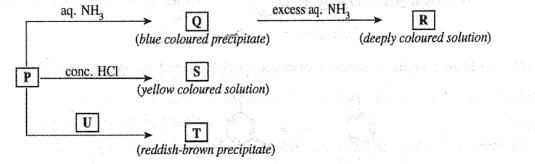
B. Calculate the mass of ZnO(s) formed.

Mass of ZnO(s) =
$$\frac{8 \ mol \ ens \ \times 96500 \ C}{1 \ mol \ e \ \times 800 \ s} \times \frac{1 \ mol \ e}{96500 \ C} \times \frac{2 \ mol \ ZnO(s)}{4 \ mol \ en} \times \frac{81 \ g}{1 \ mol \ ZnO}$$
(05)

OR

$$Mass of ZnO = 4 \ mol \times 81 \ g \ mol \tag{05}$$

C. Calculate the current passing through the cell.


$$I = q/t \tag{05}$$

$$= \frac{8 \ mol \ ens \ \times 96500 \ C}{1 \ mol \ e \ \times 800 \ s} = 965 \ A$$

(05)

7(a): 75 marks

(b) A coloured complex ion **P** is formed when the salt $M(NO_3)_n$ is dissolved in distilled water. M is a transition element belonging to the 3d block, **P** undergoes the following reactions.

T and U are coordination compounds each containing four elements. P, R and S are complex ions. (i) Identify the metal M. Give the oxidation state of M in complex ion P.

M = Cu (10)

Oxidation state: +2 OR Cu²⁺

7(b) (i): 13 marks

(03)

(ii) Give the v	value of n in $\mathbf{M}(NO_3)_n$.	
n = 1	2	(03)
	the state of the complex ion P	7(b) (ii): 03 marks
(iii) Write the c	complete electronic configuration of M in complex ion P.	
1 <i>s</i> ²	2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹	(03)
	s and the second se	7(b) (iii): 03 marks
(iv) Write the	chemical formulae of P, Q, R, S, T and U.	
Ρ:	[Cu(H ₂ O) ₆] ²⁺	(04)
Q:	Cu(OH) ₂	(04)
R:	[Cu(NH ₃) ₄] ²⁺	(04)
S:	[CuCl ₄] ²⁻	(04)
Т:	Cu ₂ [Fe(CN) ₆]	
U:	K₄[Fe(CN) ₆]	7(b) (iv): 16 marks
(v) Give t	he IUPAC names of P, R, S, T and U.	en e
P:	hexaaquacopper(II) ion	(03)
R:	tetraamminecopper(II) ion	(03)
S:	tetrachloridocuprate(II) ion	(03)
т:	copper hexacyanoferrate(II)	
U:	potassium hexacyanoferrate(II)	
		7(b) (v): 12 marks
(vi) What i	s the colour of P ?	ana an
р	ale blue	(04)
		7(b) (vi): 04 marks
	build you expect to observe in I and II given below? then H_2S gas is passed into an acidic solution containing	
bl	ack precipitate	(06)
	en the mixture obtained in I above is heated with dilut dissolved H_2S	· · · · · · · · · · · · · · · · · · ·
so	le blue solution lution is turbid/ pale yellow or milky/ white precipitate	(04) e (02)
or tui	bid pale blue solution	(06)
		7(b) (vii): 12 marks

(viii) Briefly describe a method with the aid of balanced chemical equations for determining the concentration of M^{n+} present in an aqueous solution, using the following chemicals. KI, Na₂S₂O₃ and starch.

Add excess KI (01) to an aqueous solution of volume $V_1 \text{ cm}^3$ containing M^{n+} (01) Here, $M^{n+} = Cu^{2+}$ Titrate the liberated I_2 (01) with Na₂S₂O₃ whose concentration is known (M mol dm⁻³) (01) with starch as the indicator (01)

2Cu ²⁺	+	2I ⁻	\rightarrow	2Cu⁺	+	l ₂	(1)	(01)
la la	+	25-0-2-		S.O.2-	т	21-	(2)	(01)

$$\frac{12}{2Cu^{2^{+}}} + 2S_2O_3^{2^{-}} \rightarrow S_4O_6^{2^{-}} + 2Cu^{+} \qquad -----(3) \qquad (02)$$

OR

2Cu ²⁺	+	4I ⁻	\rightarrow	2Cul ↓	+	l ₂	(1a)	(01)

 $I_2 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^{-} -----(2a)$ (01)

$$2Cu^{2^{+}} + 2S_2O_3^{2^{-}} \rightarrow 2Cul \downarrow + S_4O_6^{2^{-}} -----(3a)$$
(02)

Note: If correct overall equation is given, award the part marks for half equations as well.

From both (3) or (3a) Cu ²⁺	= S ₂ O ₃ ²⁻	(01)
--	---	------

Let the burette reading of $S_2O_3^{2-}$ be $V_2 \text{ cm}^3$ (01)

Therefore, moles of
$$S_2O_3^{2-} = V_2 \times M$$
 (01)

1000

Therefore, moles of Cu^{2+} = V_2 x M (01) 1000

Therefore, $[Cu^{2+}]$ = V_2 x M x 1000 (01) 1000 V₁ = MV₂ mol dm⁻³

 V_1

Note: The above explanation could be given in words.

7(b)(viii) : 15 marks

7(b): 75 marks

(01)

8. (a) (i) Given below is a reaction scheme for the synthesis of compound G using CH₃CH₂CH₂OH as the only organic starting compound.
 Complete the reaction scheme by drawing the structures of compounds A, B, C, D, E and F

and writing the appropriate reagents for steps 1-7, selected only from those given in the list.

CH,CH,CH,OH -Step 4 D C OH $CH_3CH_2CH-CH-CH_3 \xrightarrow{\text{Step 6}} F \xrightarrow{\text{Step 7}} CH_3CH_2CH-CHCH_3$ List of Reagents HBr, PBr₃, pyridiniumchlorochromate (PCC), Mg/dry ether, KCN, conc. H₂SO₄, dil. H₂SO₄

Compounds, A - F

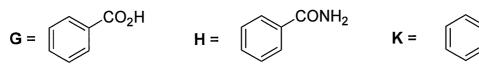
Reagents:

Step 1 = conc. H_2SO_4	Step 5 = dil.H ₂ SO ₄
Step 2 = HBr	Step 6 = PBr ₃
Step 3 = Mg / dry ether	Step 7 = KCN
Step 4 = PCC	

Compounds/Reagents

(04 x 13 = 52 marks)

8(a) (i): 52 marks


(ii) Consider the following series of reactions.Draw the structures of compounds G, H and K. Give the reagents X, Y and Z.1. LiAlH.

$$\bigcirc \overset{\text{CHO}}{\longrightarrow} X \rightarrow G \xrightarrow{Y} \bigcirc \overset{\text{COCI}}{\longrightarrow} Z \rightarrow H \xrightarrow{2. H^+/H_2^{\text{O}}} K$$

Note that K gives benzyl alcohol ((U^{CH_2OH})) when reacted with NaNO₂/dil. HCl.

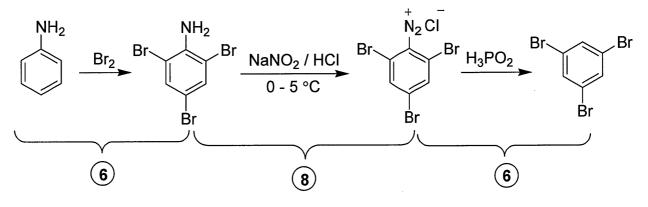
CH₂NH₂

Compounds G, H and K

Reagents

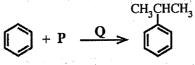
 $\mathbf{X} = H^+ / K_2 Cr_2 O_7 / \text{ or } H^+ / KMnO_4 \qquad \mathbf{Y} = PCl_5 \text{ or } PCl_3$ or H^+/CrO_3


Compounds/Reagents (04 x 6 = 24 marks)


8(a) (ii): 24 marks

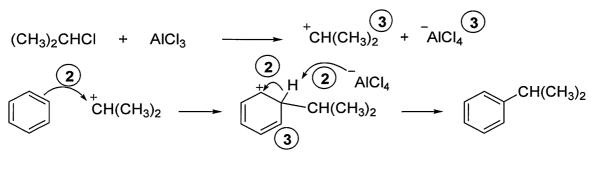
 $Z = NH_3$

8(a): 76 marks


(b) (i) Show how the following conversion could be carried out in not more than three steps

8(b) (i) 20 marks

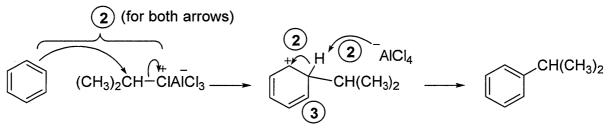
(ii) Consider the following reaction.



Identify the chemical substances P and Q necessary to carry out this reaction. Write the mechanism of this reaction.

 $\mathbf{P} + \mathbf{Q} = (CH_3)_2 CHCI + AICI_3$

P + Q = (05)


(5)

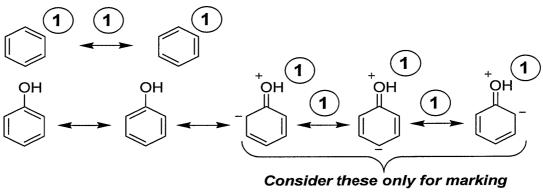
Intermediates $03 \times 3 = 09$ Arrows $02 \times 3 = 06$

Alternative answer:

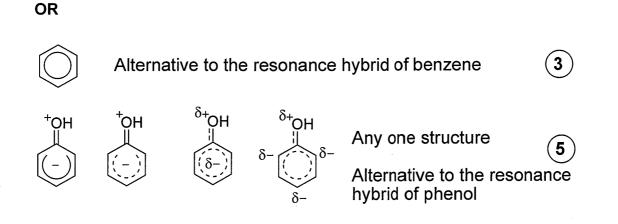
IF the student has written the electrophile as R–CI molecule polarized by coordinating to AlCl₃, only the marks allocated for the last two steps may be awarded as given below.

02+02+02+03 = 09

The electrophile may be written as:


 $(CH_3)_2CH - \overset{+}{CIAICI_3} \quad or \quad (CH_3)_2CH - \overset{+}{CI} - \overset{-}{AICI_3} \quad or \quad (CH_3)_2CH - \overset{\delta +}{CI} - \overset{\delta -}{AICI_3}$

8(b)(ii): 20 marks


8(b): 40 marks

(c) (i) Explain why phenol is more reactive in electrophilic substitution reactions than benzene, by considering their resonance hybrids.

Structures of benzene and phenol can be illustrated as follows.

Resonance structures and Double headed arrows 01 x 8 = 08

The benzene ring of phenol is more reactive towards electrophiles than benzene itself because:

The benzene ring in phenol is electron rich compared to benzene due to the Delocalization of lone pair of electrons on the oxygen atom

Over the benzene ring of phenol

 $04 \ge 3 = 12$

8(c)(i): 20 marks

(ii) Illustrate the difference in reactivity between phenol and benzene as given in (i) above by means of a suitable reaction.

Phenol reacts with bromine at room temperature/ decolorizes bromine / gives a white precipitate with bromine water

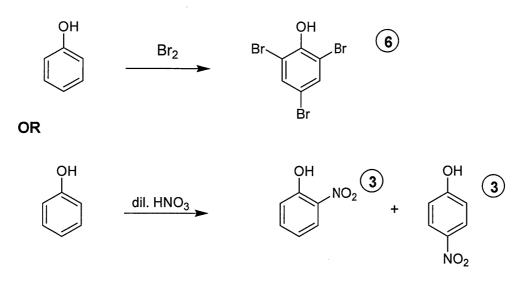
Benzene does not react with bromine at room temperature / does not decolorize bromine / does not give a white precipitate with bromine water

OR

Benzene reacts with bromine (only) in the presence of a Lewis catalyst

Reaction of phenol with bromine occurs even in the absence of Lewis catalyst

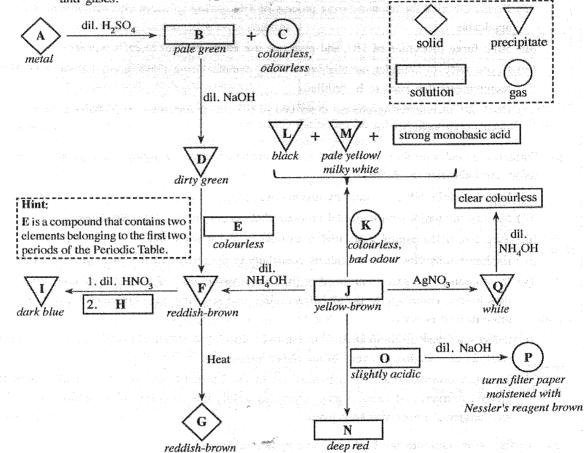
OR


Nitration of phenol takes place at **room temperature** / at **20** °C / **without heating with dilute HNO**₃ (20% HNO₃).

Benzene does not react with dilute HNO3

 $04 \ge 2 = 08$

8(c): (ii) 08 marks


(iii) Draw the structure(s) of product(s) you described in the reaction in (ii) above.

8(c) (iii): 06 marks

8(c): 34 marks

9. (a) (i) Write the chemical formulae of the substances $\mathbf{A} - \mathbf{Q}$ given in the flow chart below. (Note: Chemical equations and reasons are not expected for the identification of substances $\mathbf{A} - \mathbf{Q}$.) The symbols given in the box (dash lines) are used to represent solids, precipitates, solutions and gases.

A: Fe	B: FeSO₄ or [Fe(H₂O)6]SO₄ or [Fe(H₂O)6] ²⁺	C: H ₂	D: Fe(OH)2
E:H ₂ O ₂	F: Fe(OH)₃	G: Fe ₂ O ₃	H:K4[Fe(CN)6]
I: Fe₄[Fe(CN) ₆]₃ or KFe[Fe(CN) ₆]	J: FeCl₃	K: H₂S	L: FeS
M: SorS ₈	N: Fe(SCN)₃	O: NH₄SCN	P: NH₃
	or [Fe(SCN)(H₂O)₅] ^{2·} or [Fe(SCN)]²⁺	+	
Q: AgCl		101 marks x	x 17 = 68 marks)
			i) (i) : 68 marks
(ii) Write the complete	e electronic configuration	of A.	
1s²2s²2p ⁶ 3s²3	3p ⁶ 3a ⁶ 4s ²		(02)
	n of E in the conversion stated function.	of D to F . Give the re	levant balanced chemical
E: H ₂ O ₂ function	on – oxidizing agent		(02)
	$0 \rightarrow Fe(OH)_3 + H^+$ $^+ + 2e \rightarrow 2H_2O_1$	+ e)	
2Fe(OH) ₂ +H ₂ O ₂	$_2 \rightarrow 2Fe(OH)_3$	ана на	(03)
OR			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	•		
2Fe ²⁺ + H ₂ O ₂	+ $2H^+ \rightarrow 2Fe^{3+}$	+ 2H ₂ O	(03)
(Half reactions (01) each if written)	9 (á	a) (ii & iii) marks :07
			9 (a) 75 marks

35

(b) The solid X contains only Cu_2S and CuS. The following procedure was used to determine the percentage of Cu_2S in X.

Procedure

A 1.00 g portion of solid X was treated with 100.00 cm³ of 0.16 mol dm⁻³ KMnO₄ in dilute H_2SO_4 medium. This reaction gave Mn²⁺, Cu²⁺ and SO₄²⁻ as products. Thereafter, the excess KMnO₄ in this solution was titrated with 0.15 mol dm⁻³ Fe²⁺ solution. The volume required for the titration was 35.00 cm³.

(i) Write the balanced ionic equations for the reactions taking place in the above procedure.

Reaction of Cu₂S with MnO₄-

2Cu⁺ \rightarrow 2Cu²⁺ (03)2e -----(1) S²⁻ $4H_2O \rightarrow SO_4^{2-}$ 8H⁺ 8e ---(2) (03) +OR (1) + (2)S²⁻ + 4H₂O \rightarrow 2Cu²⁺ + SO₄²⁻ + 8H⁺ + 10e -----(3) 2Cu⁺ 5e $Mn^{2+} + 4H_2O$ ----(4) (03) 2(MnO₄⁻ + 8H⁺ + \rightarrow (3) + (4)+ $2MnO_4^-$ + $8H^+ \rightarrow 2Cu^{2+} + SO_4^{2-} + 2Mn^{2+} + 4H_2O$ (05) 2Cu⁺ + S²⁻

OR

 $Cu_2S + 2MnO_4 + 8H^+ \rightarrow 2Cu^{2+} + SO_4^{2-} + 2Mn^{2+} + 4H_2O$ (If only this equation is written award the full 14 marks)

Reaction of CuS with MnO4⁻

5(S²⁻ SO42-8H* --(5) $4H_2O \rightarrow$ 8e) + Mn²⁺ 8H⁺ + 4H₂O) --(6) 8(MnO₄⁻ + 5e + (5)+(6)5S²⁻ 8Mn²⁺ + 12H₂O + 8MinO₄⁻ + 24H⁺ 5SO₄²⁻ (05) \rightarrow +

OR

5CuS + $8MnO_4^-$ + $24H^+ \rightarrow 5CuSO_4$ + $8Mn^{2+}$ + $12H_2O$

Reaction of Fe²⁺ with MnO₄ $5(Fe^{2+} \rightarrow Fe^{3+})$ (03) -(7) + e) ---(8) MnO₄⁻ + 8H+ 5e Mn²⁺ $4H_2O$ + (7) + (8)(05)5Fe²⁺ + MnO₄⁻ + 8H⁺ Mn²⁺ + 5Fe³⁺ + 4H₂O 9 (b)(i) : 27 marks

OR

Reaction of Cu⁺ with MnO₄⁻

5(Cu⁺	→ Cu²+	+	e)			(1a)	(03)
MnO₄-	+ 8H⁺	+	5e →	Mn²+ +	4H ₂ O	(2a)	(03)
(1a) + (2 5Cu⁺ +	,	+	8H⁺ →	5Cu ²⁺ +	Mn ²⁺ + 4H ₂ C)	(05)
	n of S²⁻ wi t + 4H₂O			+ 8H⁺	+ 8e)	(5)	(03)
8(MnO₄⁻	+ 8H⁺	+	5e -	→ Mn²+	+ 4H ₂ O)	(6)	
(5)+ (6) 5S ²⁻	+ 8MnO₄	- +	24H⁺	→ 5SO₄²	- + 8Mn ²⁺ +	12H ₂ O	(05)

Reaction of Fe²⁺ with MnO₄⁻

5(Fe ²⁺	\rightarrow	Fe ³⁺	+	e)						(7)	(03)
MnO₄ ⁻	+	8H⁺	+	5e	\rightarrow	Mn²⁺	+	4H ₂ O		(8)	
(7) + (8)									paneter a	
5Fe ²⁺	+	MnO₄ ⁻	+	8H⁺	\rightarrow	Mn ²⁺	+	5Fe³⁺	+	4H₂O	(05)

Note: If only the overall reaction is written correctly, award the marks due to the half reactions as well.

b (b)(i): 27 marks

(ii) Based on the answers to (i) above, determine the molar ratio between,

- I. Cu₂S and KMnO₄
- II. CuS and KMnO₄
- III. Fe²⁺ and KMnO₄

Molar ratios

- $\frac{Cu_2S}{MnO_4^{-}} = \frac{1}{2} \qquad \qquad \frac{CuS}{MnO_4^{-}} = \frac{5}{8} \qquad \qquad \frac{Fe^{2+}}{MnO_4^{-}} = \frac{5}{1} \qquad (05 \times 3)$
- OR

 Cu_2S : $MnO_4^- = 1: 2$ $CuS: MnO_4^- = 5: 8$ $Fe^{2+}: MnO_4^- = 5: 1$

9 (b)(ii): 15 marks

37

(iii) Calculate the percentage by weight of Cu_2S in X. (Cu = 63.5, S = 32)

Let the number of moles of Cu_2S and CuS be n_1 and n_2 respectively

Let the number of moles of Cu_2S and CuS be n_1 and n_2 resp	Dectively
in the 1.0 g of sample X	
Molar mass of Cu ₂ S = (2 x 63.5) + 32 = 159	(02)
Molar mass of CuS = 63.5 + 32 = 95.5	(02)
$159n_1 + 95.5n_2 = 1.0$ (9)	(02)
Moles of Fe ²⁺ reacted = $\frac{0.15}{1000} \times 35.0$	(02)
Moles of MnO ₄ - $= \frac{0.15}{1000} \times 35.0 \times \frac{1}{5}$	(02)
Moles of MnO_{4}^{-} reacted with Cu_2S and CuS	
$= \frac{0.16}{1000} \times 100.0 - \frac{0.15}{1000} \times 35.0 \times \frac{1}{5}$	(02)
= 0.016 - 0.001	(02)
= 0.015 mol	(02)
Based on molar ratios	
$2n_1 + \frac{8}{5}n_2 = 0.015 \qquad(10)$ (9) + (10)	(02)
$2n_1 + \frac{8}{5} \frac{(1-159n1)}{95.5} = 0.015$	(02)
$2 \times 5 \times 95.5 n_1 + 8(1-159n_1) = 0.015 \times 95.5 \times 5$	(02)
$955n_1 + 8 - 1272n_1 = 7.1625$	
317n ₁ = 0.84	
$n_1 = 0.0027$	(02)
Weight of Cu_2S = 0.0027 x 159 g	(02)
= 0.43 g	(02)
% Cu ₂ S = $\frac{0.43}{1.0} \times 100$	(02)
= 43%	(03)
	9 (b)(iii) : 33 marks

OR

Moles of Fe ²⁺	$=\frac{0.15}{1000}\times 35.0$	(02)

 Moles of MnO₄⁻ remaining
 $= \frac{0.15}{1000} \times 35.0 \times \frac{1}{5}$ (02)

 Moles of MnO₄⁻ added
 $= \frac{0.16}{1000} \times 100.0$ (02)

Moles of MnO₄ reacted with Cu₂S and CuS

 $= \frac{0.16}{1000} \times 100.0 - \frac{0.15}{1000} \times 35.0 \times \frac{1}{5}$ (02)

Consider the masses of Cu₂S and CuS to be p and q respectively.

p + q = 1.0 g	(9a)	(02)
Molar mass of $Cu_2S = (2 x)$	63.5) + 32 = 159	(02)
Molar mass of CuS = 63.5	5 + 32 = 95.5	(02)

$$\frac{2p}{159} + \frac{8q}{95.5 \times 5} = 0.015$$
 (02)

From (9a) & (10a)

$$\frac{2p}{159} + \frac{8(1-p)}{95.5 \times 5} = 0.015$$
 (02)

$$2p \times 5 \times 95.5 + 8 \times 159(1-p) = 0.015 \times 5 \times 159 \times 95.5$$
 (02)

$$317p = 133.16$$

 $p = \frac{133.16}{317} = 0.42$ (02)

% Cu₂S =
$$\frac{0.42}{1000} \times 100.0$$
 (02)

9 (b)(iii) : 33 marks

OR

Let the number of moles of Cu₂S and CuS be n₁ and n₂ respectively in the 1.0 g of X $5Cu^+$ + MnO₄⁻ + 8H⁺ \rightarrow 5Cu²⁺ + Mn²⁺ + 4H₂O $5S^{2-}$ + $8MnO_4^-$ + $24H^+ \rightarrow 5SO_4^{2-}$ + $8Mn^{2+}$ + $12H_2O$ $5Fe^{2+} + MnO_4^{-} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$ $= \frac{0.16}{1000} \times 100.0 = 0.016$ Moles of MnO₄ added (02) $= \frac{0.15}{1000} \times 35.0 = 0.005$ Moles of Fe²⁺ reacted (02) $= \frac{0.15}{1000} \times 35.0 \times \frac{1}{5} = 0.001$ Moles of MnO₄⁻ remaining (02) Moles of MnO4⁻ reacted = 0.016 - 0.001 = 0.015 (02) Molar mass of $Cu_2S = (2 \times 63.5) + 32 = 159$ (02) Molar mass of CuS = 63.5 + 32 = 95.5 (02) $159n_1 + 95.5n_2 = 1$ -----(1) (02) Moles of $Cu^+ = 2n_1$ Therefore, moles of MnO₄ reacted = $\frac{2n_1}{5}$ Moles of $S^{2-} = n_1 + n_2$ (02) Therefore, moles of MnO₄⁻ reacted with S²⁻ = $\frac{8(n_1 + n_2)}{5}$

Therefore, total moles of MnO_4^- reacted $= \frac{10n_1 + 8n_2}{5}$ (02)

$$\frac{(10n_1 + 8n_2)}{5} \text{ mol} = 0.015 \text{ mol}$$
(02)

$$10n_1 + 8n_2 = 0.075 \text{ mol}$$
 -----(2) (02)
(1) x 8 - (2) x 95.5

 $1272 n_1 - 955 n_1 = 8 - 7.14 \tag{02}$

317n₁ = 0.86 Therefore, n₁ =
$$\frac{0.86}{317}$$

Therefore, moles of Cu₂S in 1 g = $\frac{0.86}{317}$ (02)

Mass of
$$Cu_2S$$
 = 0.86 × 159 g (02)

% of Cu₂S =
$$\frac{0.86}{317} \times 159 \times 100\%$$
 (02)

9 (b)(iii): 33 marks

9(b): 75 marks

10. (a) The following questions are	based on the properties of titanium dioxide (TiO ₂) and its manufacture
carried out by the "Chloride	e Process", and the second

(i) Name the raw materials used in this process.

Rutile	(02)
Coke	(02)
Cl ₂	(02)
O ₂	(02)

10 (a) (i): 08 marks

(ii) Briefly describe the manufacturing process of TiO₂ giving balanced chemical equations where applicable.

Chlorination

Removal of water at 200 °C / 300 °C		(02)
-------------------------------------	--	------

Heating of rutile and coke mixture at 900 °C / 950 °C	(02)
---	------

$TiO_2(s) + C(s) \rightarrow$	• Ti (s) + CO ₂ (g)	(A)	(03)
-------------------------------	--------------------------------	-----	------

Stream of chlorine is passed over mixture of rutile and coke (02)

OR	
Reactions (A) and (B) can be combined.	
$TiO_2(s) + C(s) + 2Cl_2 \rightarrow TiCl_4(g) + CO_2(g)$	(06)
For three descriptions above	(02 x 3)

(02)

After removal of dust particles, TiCl₄ gaseous mixture is cooled and liquid TiCl₄ is separated. (02)

Oxidation

TiCl₄ is reacted with oxygen and TiO₂ is regenerated.

$$TiCl_4(g) + O_2(g) \rightarrow TiO_2(s) + 2Cl_2(g)$$
 (03)

 Cl_2 is re-used in chlorination.

10 (a) (ii): 19 marks

(iii) State three properties of TiO₂ and give one use each, relevant to each property.

- White colour as a pigment in paint, plastic goods and paper, paper
- High refractive index as a pigment
- Chemically inert as a pigment in medicine and toothpaste
- Prevents the reach of UV rays to skin produce substances to prevent sunburn

Any three properties (02)	x 3 = 06)
---------------------------	-----------

One use for each property

(02 x 3 = 06)

10 (a) (iii): 12 marks

(iv) If you were to consider establishing a TiO_2 manufacturing plant in Sri Lanka, state three requirements that need to be fulfilled.

- Availability of raw material
- Capitol
- Labour force
- Technology
- Storage conditions
- Minimize environmental pollution
- Transport facilities
- Waste product management

Any three

(02 x 3 = 06)

10 (a) (iv): 06 marks

(v) Does the manufacturing process described in (ii) above contribute to global warming? Justify your answer.

Yes.

(02)

CO₂ is produced and given out to the environment in the oxidation of coke

(03)

10 (a) (v): 05 marks

10(a): 50 marks

(b) Currently, global warming due to change in greenhouse effect is significantly greater than that before the industrial revolution.

(i) Explain briefly what is meant by greenhouse effect.

Heating of earth (01) by infrared absorbing gases (01) in the atmosphere by trapping energy (IR radiation) (02) reradiated from the earth surface (02).

10 (b) (i): 06 marks

(ii) Identify the major environmental problem that occurs due to global warming.

Climate change

(03)

10 (b) (ii): 03 marks

(iii) State two main natural gases that contribute to global warming.

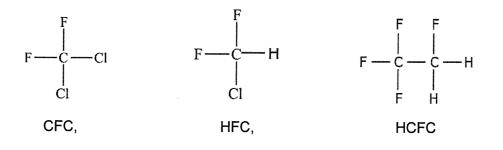
 CO_2 , CH_4 , and N_2O any two (03 + 03)

10 (b) (iii): 06 marks

(iv) Explain briefly how microorganisms contribute to the release of the gases you stated in (iii).

CO₂- Action of aerobic bacteria on organic substances/ plant materials/ and animal materials

CH₄- Action of anaerobic bacteria on organic substances/ materials


N₂O- Action denitrifying bacteria on ammonia/ nitrogen fertilizers(urea)/ and nitrogen containing substances.

Any two (04 + 04)

10 (b) (iv): 08 marks

(v) In addition to the gases you stated in (iii), name two classes of synthetic volatile compounds that directly contribute to the global warming, and selecting one compound from each class, draw their structures.

CFC, HFC, HCFC

Any two (03 for class +03 for the structure) (03 x 4 =12 marks) No marks for the structure if the class is wrong Note In addition to these compounds award marks for the following structures on each class.

CFC - Any saturated organic compound that contain one or two carbon atoms with only CI and F atom

HCFC - Any saturated organic compound that contain one or two carbon atoms with only one hydrogen atom and others are CI and F atoms

HFC - Any saturated organic compound that contain one or two carbon atoms with only one hydrogen atom and others are F atoms.

10 (b) (v): 12 marks

(vi) Select one class of compounds from the two classes you stated in (v) that contributes to the catalytic degradation of ozone in the upper atmosphere.

CFC or HCFC (must be selected from (v) to get marks)

10 (b) (vi): 03 marks

(vii) The slow down of industrial activities due to the Covid-19 pandemic temporarily eased the global environmental issues in many countries. Justify this statement by using two main global environmental issues you have learnt.

<u>Reduction of Global warming (01)</u>: Due to the reduction of emission of $CO_2(01)$ because of reduction of fossil fuel burning (02) due to limitation of industrial activities (01) and transportation (01).

<u>Reduction of acid rain (01)</u>: Reduction of emission of SO₂(01) into the atmosphere due to decrease of burning of coal and diesel (01+01) for power generation and transportation (01+01) respectively.

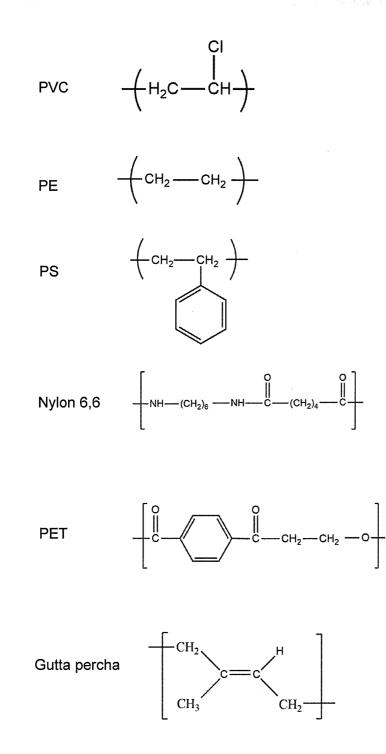
or

Reduction of acid rain (01) Reduction of emission of NO₂/NO into the atmosphere (01) due to decrease of fuel burning (01) in internal combustion engine (01) of vehicles caused by limitation of transportation (02).

<u>Reduction of Photochemical smog</u> (01). Reduction of emission of NO and volatile hydrocarbons (01+01) into the atmosphere from internal combustion engines/vehicles (01) due to limitation of transportation (02).

Any two (06 x 2 = 12 marks)

10 (b) (vii): 12 marks


10(b): 50 marks

(c) The following questions are based on the polymers given below.

Polyvinyl chloride (PVC), Polyethylene (PE), Polystyrene (PS), Bakelite,

Nylon 6.6, Polyethylene terephthalate (PET), Gutta percha

(i) Draw the repeating units of fo f the above polymers.

Brackets are not required for award of marks.

Any four

 $(02 \times 4 = 08)$

10 (c) (i): 08 marks

44

- (ii) Categorize each of the above seven (7) polymers as either,
 - 1. natural or synthetic polymers.
 - II. addition or condensation polymers.

	I - natural/synthetic	II - addition/condensation
PVC	synthetic	addition
PE	synthetic	addition
PS	synthetic	addition
Bakelite	synthetic	condensation
Nylon 6,6	synthetic	condensation
PET	synthetic	condensation
Gutta percha	natural	addition
	For I – Any 6	(02 x 6 = 12)
	For II – Any 6	(02 x 6 = 12)
		10 (c) (ii): 24 marks

(iii) Name the two monomers used in the formation of bakelite.

phenol and formaldehyde

OR and HCHO

(02 x 2 = 04) 10 (c) (iii): 04 marks

(iv) Polymers can be grouped into two categories based on their thermal properties. State these two categories. Write to which of these categories PVC and bakelite belong.

Thermoset polymers	(02)
Thermoplastic polymers	(02)
Bakelite – thermoset polymer	(02)
PVC – thermoplastic polymer	(02)

10 (c) (iv): 08 marks

(v) Give one use each for three of the polymers given in the above list.

PVC	pipes to supply water, seat cover, electric wire covers
PE	food wrapping, garbage bags
PS	stylofoam cups, rigiform, insulating materials, packing materials
Bakelite	heat resistant parts for electric utensils, insulating materials
Nylon 6,6	clothes, fishing nets & lines, tyre threads
PET	bottles
Gutta percha	insulation, permanent tooth fillings, golf balls

Any three

(02 x 3 = 06)

10(c) (v): 06 marks

10(c): 50 marks